Citation: | MA Bo-yuan, JIANG Shu-fang, YIN Dou, SHEN Hao-kai, BAN Xiao-juan, HUANG Hai-you, WANG Hao, XUE Wei-hua, FENG Hua. Image segmentation metric and its application in the analysis of microscopic image[J]. Chinese Journal of Engineering, 2021, 43(1): 137-149. doi: 10.13374/j.issn2095-9389.2020.05.28.002 |
[1] |
Szeliski R. Computer Vision: Algorithms and Applications. Springer Science & Business Media, 2011
|
[2] |
章毓晉. 圖像工程. 4版. 北京: 清華大學出版社, 2018
Zhang Y Z. Image Engineering. 4th Ed. Beijing: Tsinghua University Press, 2018
|
[3] |
徐瑞. 圖像分割方法及性能評價綜述. 寧波工程學院學報, 2011, 23(3):76 doi: 10.3969/j.issn.1008-7109.2011.03.019
Xu R. An overview of image segmentation technique and performance evaluation. J Ningbo Univ Technol, 2011, 23(3): 76 doi: 10.3969/j.issn.1008-7109.2011.03.019
|
[4] |
Gonzalez R C, Woods R E. Digital Image Processing. 3rd Ed. Upper Saddle River: Prentice Hall Press, 2008
|
[5] |
王靜靜, 徐小亮, 梁凱彥, 等. 多孔基定形復合相變材料傳熱性能提升研究進展. 工程科學學報, 2020, 42(1):26
Wang J, Xu X L, Liang K Y, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change material for thermal energy storage applications: a review. Chin J Eng, 2020, 42(1): 26
|
[6] |
叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362
Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362
|
[7] |
宋曉艷. 體視學, 圖像分析與計算材料學之間的關系及進展. 中國體視學與圖像分析, 2008, 13(4):280 doi: 10.3969/j.issn.1007-1482.2008.04.013
Song X Y. Progress on the multi-disciplinary relationship of stereology, image analysis and computational materials science. Chin J Stereol Image Anal, 2008, 13(4): 280 doi: 10.3969/j.issn.1007-1482.2008.04.013
|
[8] |
Rajan K. Materials informatics: The materials “gene” and big data. Ann Rev Mater Res, 2015, 45: 153
|
[9] |
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547
|
[10] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436
|
[11] |
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 1979, 9(1): 62
|
[12] |
Lakshmi S, Sankaranarayanan D V. A study of edge detection techniques for segmentation computing approaches. Int J Comput Appl, 2010, 1(1): 35
|
[13] |
Roerdink J B T M, Meijster A. The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform, 2000, 41(1-2): 187
|
[14] |
Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell, 1994, 16(6): 641
|
[15] |
Jain A K. Data clustering: 50 years beyond K-means. Pattern Recognit Lett, 2010, 31(8): 651
|
[16] |
Ma B Y, Ban X J, Su Y, et al. Fast-FineCut: Grain boundary detection in microscopic images considering 3D information. Micron, 2019, 116: 5
|
[17] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation // Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 3431
|
[18] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation // International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234
|
[19] |
Li W, Field K G, Morgan D. Automated defect analysis in electron microscopic images. npj Comput Mater, 2018, 4: 36
|
[20] |
Azimi S M, Britz D, Engstler M, et al. Advanced steel microstructural classification by deep learning methods. Sci Rep, 2018, 8: 2128
|
[21] |
Ma B Y, Ban X J, Huang H Y, et al. Deep learning-based image segmentation for Al?La alloy microscopic images. Symmetry, 2018, 10(4): 107
|
[22] |
Powers D M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol, 2011, 2(1): 37
|
[23] |
Dice L R. Measures of the amount of ecologic association between species. Ecology, 1945, 26(3): 297
|
[24] |
Abdou I E, Pratt W K. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE, 1979, 67(5): 753
|
[25] |
Mosinska A, Marquez-Neila P, Koziński M, et al. Beyond the pixel-wise loss for topology-aware delineation // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 3136
|
[26] |
Yeung K Y, Ruzzo W L. Details of the adjusted rand index and clustering algorithms, supplement to the paper an empirical study on principal component analysis for clustering gene expression data. Bioinformatics, 2001, 17(9): 763
|
[27] |
Rand W M. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc, 1971, 66(336): 846
|
[28] |
Hubert L, Arabie P. Comparing partitions. J Classific, 1985, 2(1): 193
|
[29] |
Meil? M. Comparing clusterings — an information based distance. J Multivar Anal, 2007, 98(5): 873
|
[30] |
Nunez-Iglesias J, Kennedy R, Parag T, et al. Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE, 2013, 8(8): e71715
|
[31] |
Booz Allen Hamilton. Data Science Bowl[J/OL]. Kaggle (2018-05-21)[2020-12-02]. https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
|
[32] |
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context// European Conference on Computer Vision. Zurich, 2014: 740
|
[33] |
Waggoner J, Zhou Y J, Simmons J, et al. 3D materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism. IEEE Trans Image Process, 2013, 22(12): 5282
|
[34] |
Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986, 8(6): 679
|
[35] |
Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell, 1991, 13(6): 583
|
[36] |
Hartigan J, Wong M. Algorithm AS 136: A K?means clustering algorithm. Appl Stat, 1979, 28(1): 100
|
[37] |
Grady L. Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell, 2006, 28(11): 1768
|
[38] |
薛維華. 晶粒組織的三維模型構建與定量表征研究[學位論文]. 北京: 北京科技大學, 2017
Xue W H. Three?Dimensional Modeling and Quantitative Characterization of Grain Structure[Dissertation]. Beijing: University of Science & Technology Beijing, 2017
|