<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
WANG Zhen-yang, JIANG De-wen, WANG Xin-dong, ZHANG Jian-liang, LIU Zheng-jian, ZHAO Bao-jun. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine[J]. Chinese Journal of Engineering, 2021, 43(4): 569-576. doi: 10.13374/j.issn2095-9389.2020.05.28.001
Citation: WANG Zhen-yang, JIANG De-wen, WANG Xin-dong, ZHANG Jian-liang, LIU Zheng-jian, ZHAO Bao-jun. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine[J]. Chinese Journal of Engineering, 2021, 43(4): 569-576. doi: 10.13374/j.issn2095-9389.2020.05.28.001

Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine

doi: 10.13374/j.issn2095-9389.2020.05.28.001
More Information
  • The hot metal temperature is a key process parameter for blast furnace (BF) ironmaking that reflects the quality of hot metal, the thermal state of BF hearth, the energy utilization efficiency of BF, and many other information. Prediction of the hot metal temperature in the next smelting cycle will be helpful in gaining a better understanding of the change trend of hot metal quality and BF smelting status in time. With this, corresponding operational measures can be conducted to maintain the BF stable and smooth state, high production, and low consumption. Nowadays, big data technology has made considerable progress toward a more accurate and faster collection, storage, transmission, query, analysis, and integration of mass data, providing a good data foundation for data-driven machine learning models. In addition, with the substantial increase in computer calculation speed and the significant development of algorithms, the prediction accuracy of deep machine learning models has noticeably improved. The development of these technologies provides feasibility for the prediction of important indicators under complex industrial conditions. Based on the data produced from a 4000-m3 BF in a large span time range (2014–2019) and daily time dimension, this paper considered hot metal temperature as the objective function. First, the characteristic parameters of hot metal temperature were processed by linear and nonlinear correlation analysis, feature selection, and normalization methods. Then, the positive and negative correlation characteristic parameters that have a significant influence on the temperature of the hot metal were obtained. Finally, prediction models of hot metal temperature were established based on two algorithms of support vector regression and extreme learning machine. Although both the algorithms can achieve effective prediction, results from support vector regression are better at an average absolute error of 4.33 °C and a hit rate of 94.0% (±10 °C).

     

  • loading
  • [1]
    Wang Z Y, Zhang J L, Liu Z J, et al. Status, technological progress, and development directions of the ironmaking industry in China. Ironmaking Steelmaking, 2019, 46(10): 937 doi: 10.1080/03019233.2019.1697111
    [2]
    Wang Z Y, Zhang J L, An G, et al. Analysis on the oversize blast furnace desulfurization and a sulfide capacity prediction model based on congregated electron phase. Metall Mater Trans B, 2016, 47(1): 127 doi: 10.1007/s11663-015-0462-3
    [3]
    Martin R D, Obeso F, Mochon J, et al. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmaking Steelmaking, 2007, 34(3): 241 doi: 10.1179/174328107X155358
    [4]
    Jimenez J, Mochon J, de Ayala J S, et al. Blast furnace hot metal temperature prediction through neural networks-based models. ISIJ Int, 2004, 44(3): 573 doi: 10.2355/isijinternational.44.573
    [5]
    Ding Z Y, Zhang J, Liu Y. Ensemble non-Gaussian local regression for industrial silicon content prediction. ISIJ Int, 2017, 57(11): 2022 doi: 10.2355/isijinternational.ISIJINT-2017-251
    [6]
    Gao C H, Chen J M, Zeng J S, et al. A chaos-based iterated multistep predictor for blast furnace ironmaking process. AIChE J, 2009, 55(4): 947 doi: 10.1002/aic.11724
    [7]
    崔桂梅, 李靜, 張勇, 等. 基于T-S模糊神經網絡模型的高爐鐵水溫度預測建模. 鋼鐵, 2013, 48(11):11

    Cui G M, Li J, Zhang Y, et al. Prediction modeling study for blast furnace hot metal temperature based on T-S fuzzy neural network model. Iron Steel, 2013, 48(11): 11
    [8]
    崔桂梅, 程史. 基于分布式神經網絡模型的高爐爐溫預測建模. 鋼鐵研究學報, 2014, 26(6):27

    Cui G M, Cheng S. Predictive modeling of blast furnace temperature by using distributed neural network model. J Iron Steel Res, 2014, 26(6): 27
    [9]
    石琳, 湯佳佳, 于濤, 等. 基于樣條變換的非線性PLS的反應高爐爐溫的參數預測. 鋼鐵研究學報, 2013, 25(2):20

    Shi L, Tang J J, Yu T, et al. Parameters prediction on furnace temperature on blast furnace based on a nonlinear spline transform-PLS. J Iron Steel Res, 2013, 25(2): 20
    [10]
    Zhang X M, Kano M, Matsuzaki S. A comparative study of deep and shallow predictive techniques for hot metal temperature prediction in blast furnace ironmaking. Comput Chem Eng, 2019, 130: 106575 doi: 10.1016/j.compchemeng.2019.106575
    [11]
    Zhang X M, Kano M, Matsuzaki S. Ensemble pattern trees for predicting hot metal temperature in blast furnace. Comput Chem Eng, 2019, 121: 442 doi: 10.1016/j.compchemeng.2018.10.022
    [12]
    Diaz J, Fernandez F J, Prieto M M. Hot metal temperature forecasting at steel plant using multivariate adaptive regression splines. Metals, 2020, 10(1): 41
    [13]
    Hashimoto Y, Sawa Y, Kano M. Online prediction of hot metal temperature using transient model and moving horizon estimation. ISIJ Int, 2019, 59(9): 1534 doi: 10.2355/isijinternational.ISIJINT-2019-101
    [14]
    Su X L, Zhang S, Yin Y X, et al. Prediction model of hot metal temperature for blast furnace based on improved multi-layer extreme learning machine. Int J Mach Learn Cybern, 2019, 10(10): 2739 doi: 10.1007/s13042-018-0897-3
    [15]
    Zhao H, Zhao D T, Yue Y J, et al. Study on prediction method of hot metal temperature in blast furnace // IEEE International Conference on Mechatronics and Automation. Takamatsu, 2017: 316.
    [16]
    Wang Y K, Liu X Y, Zhang B L. On feature selection and blast furnace temperature tendency prediction in hot metal based on SVM-RFE // Australian and New Zealand Control Conference. Melbourne, 2018: 371.
    [17]
    Yue Y J, Dong A, Zhao H, et al. Study on prediction model of blast furnace hot metal temperature // IEEE International Conference on Mechatronics and Automation. Harbin, 2016: 1396.
    [18]
    Liu Y, Gao Z. Enhanced just-in-time modelling for online quality prediction in BF ironmaking. Ironmaking Steelmaking, 2015, 42(5): 321 doi: 10.1179/1743281214Y.0000000229
    [19]
    郭東偉, 周平. 基于稀疏化魯棒LS-SVR與多目標優化的鐵水硅含量軟測量建模. 工程科學學報, 2016, 38(9):1233

    Guo D W, Zhou P. Soft-sensor modeling of silicon content in hot metal based on sparse robust LS-SVR and multi-objective optimization. Chin J Eng, 2016, 38(9): 1233
    [20]
    張海剛, 張森, 尹怡欣. 基于全局優化支持向量機的多類別高爐故障診斷. 工程科學學報, 2017, 39(1):39

    Zhang H G, Zhang S, Yin Y X. Multi-class fault diagnosis of BF based on global optimization LS-SVM. Chin J Eng, 2017, 39(1): 39
    [21]
    褚菲, 葉俊鋒, 馬小平, 等. 基于OS-ELM的CCPP副產煤氣燃料系統在線性能預測. 工程科學學報, 2016, 38(6):861

    Chu F, Ye J F, Ma X P, et al. Online performance prediction of CCPP byproduct coal-gas system based on online sequential extreme learning machine. Chin J Eng, 2016, 38(6): 861
    [22]
    李愛蓮, 趙永明, 崔桂梅. 基于灰色關聯分析的ELM高爐溫度預測模型. 鋼鐵研究學報, 2015, 27(11):33

    Li A L, Zhao Y M, Cui G M. Prediction model of blast furnace temperature based on ELM with grey correlation analysis. J Iron Steel Res, 2015, 27(11): 33
    [23]
    陳恒志, 楊建平, 盧新春, 等. 基于極限學習機(ELM)的連鑄坯質量預測. 工程科學學報, 2018, 40(7):815

    Chen H Z, Yang J P, Lu X C, et al. Quality prediction of the continuous casting bloom based on the extreme learning machine. Chin J Eng, 2018, 40(7): 815
    [24]
    陳鵬, 李擎, 張德政, 等. 多模態學習方法綜述. 工程科學學報, 2020, 42(5):557

    Chen P, Li Q, Zhang D Z, et al. A survey of multimodal machine learning. Chin J Eng, 2020, 42(5): 557
    [25]
    Tunckaya Y. Performance assessment of permeability index prediction in an ironmaking process via soft computing techniques. Proc Inst Mech Eng Part E-J Process Mech Eng, 2017, 231(6): 1101 doi: 10.1177/0954408916654199
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1586) PDF downloads(139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频