<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
ZHANG Yu, YU Ting-ting, ZHANG Tong, LIU Shu-yan, ZHOU Jia-wen. Experimental study of the permeability evolution of fractured mudstone under complex stress paths[J]. Chinese Journal of Engineering, 2021, 43(7): 903-914. doi: 10.13374/j.issn2095-9389.2020.05.27.005
Citation: ZHANG Yu, YU Ting-ting, ZHANG Tong, LIU Shu-yan, ZHOU Jia-wen. Experimental study of the permeability evolution of fractured mudstone under complex stress paths[J]. Chinese Journal of Engineering, 2021, 43(7): 903-914. doi: 10.13374/j.issn2095-9389.2020.05.27.005

Experimental study of the permeability evolution of fractured mudstone under complex stress paths

doi: 10.13374/j.issn2095-9389.2020.05.27.005
More Information
  • Corresponding author: E-mail: zhangyu@upc.edu.cn
  • Received Date: 2020-05-27
    Available Online: 2020-08-14
  • Publish Date: 2021-07-01
  • The main reservoirs of oil and gas are in the pores and fractures of rocks. Under deep and complex stress environments, reservoir rock fracture permeability evolution directly affects the flow of oil and gas, which is an important research object of oil and gas exploration and development. In order to study the permeability evolution of fractured rock under complex stress paths, a permeability test of a single sample in the process of loading and unloading complex stress paths was performed using high-precision hydro-mechanics coupled with triaxial experimental equipment. The experimental scheme entails permeability tests under (i) increasing confining pressure; (ii) increasing liquid pressure; (iii) cyclic loading and unloading deviatoric stress; and (iv) increasing confining pressure and deviatoric stress synchronously. The results show that liquid flow in fractured mudstone can be regarded as laminar flow with low velocity. The sample containing more fracture (R2) has a significantly higher permeability and stress sensitivity. The permeability changes with both liquid and confining pressure as a function of positive and negative exponential functions. The increase in deviatoric stress leads to a decrease in permeability, and unloading causes permeability to increase. The whole evolution of permeability is irreversibly reduced. During the increasing confining pressure and deviatoric stress stage, permeability also decreases, and tends to stabilize. Under a confining pressure of 10.3 MPa, permeability remains basically constant. Therefore, based on the double medium model of fracture, the permeability evolution model of fractured rock was proposed considering the interaction among fracture system, matrix system, and the expansion deformation of fracture under external stress. The simulation results of the model are in good agreement with the experimental results. These results can provide an important theoretical basis for the prediction of permeability evolution of fractured mudstone and efficient oil and gas exploitation.

     

  • loading
  • [1]
    鄒才能, 趙文智, 賈承造, 等. 中國沉積盆地火山巖油氣藏形成與分布. 石油勘探與開發, 2008, 35(3):257 doi: 10.3321/j.issn:1000-0747.2008.03.001

    Zou C N, Zhao W Z, Jia C Z, et al. Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China. Petrol Explor Dev, 2008, 35(3): 257 doi: 10.3321/j.issn:1000-0747.2008.03.001
    [2]
    何雨丹, 魏春光. 裂縫型油氣藏勘探評價面臨的挑戰及發展方向. 地球物理學進展, 2007, 22(2):537 doi: 10.3969/j.issn.1004-2903.2007.02.028

    He Y D, Wei C G. The present situation and research direction of evaluation methods in fracture type reservoir. Prog Geophys, 2007, 22(2): 537 doi: 10.3969/j.issn.1004-2903.2007.02.028
    [3]
    周漢國, 郭建春, 李靜, 等. 裂隙特征對巖石滲流特性的影響規律研究. 地質力學學報, 2017, 23(4):531 doi: 10.3969/j.issn.1006-6616.2017.04.004

    Zhou H G, Guo J C, Li J, et al. A study on the influence rule of the fracture characteristics on rock seepage characteristics. J Geomech, 2017, 23(4): 531 doi: 10.3969/j.issn.1006-6616.2017.04.004
    [4]
    Fujii T, Funatsu T, Oikawa Y, et al. Evolution of permeability during fracturing processes in rocks under conditions of geological storage of CO2. Mater Trans, 2015, 56(5): 679 doi: 10.2320/matertrans.M-M2015802
    [5]
    王帥, 于慶磊, 王玲. 單軸壓縮條件下裂隙粗糙度對滲透系數的影響. 工程科學學報. https://doi.org/10.13374/j.issn2095-9389.2020.05.26.001

    Wang S, Yu Q L, Wang L. Effect of fracture roughness on permeability coefficient under uniaxial compression. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.05.26.001
    [6]
    Wang H Y. Hydraulic fracture propagation in naturally fractured reservoirs: Complex fracture or fracture networks. J Nat Gas Sci Eng, 2019, 68: 102911 doi: 10.1016/j.jngse.2019.102911
    [7]
    李勝, 羅明坤, 范超軍, 等. 基于核磁共振和低溫氮吸附的煤層酸化增透效果定量表征. 煤炭學報, 2017, 42(7):1748

    Li S, Luo M K, Fan C J, et al. Quantitative characterization of the effect of acidification in coals by NMR and low-temperature nitrogen adsorption. J China Coal Soc, 2017, 42(7): 1748
    [8]
    姚軍, 黃朝琴, 劉文政, 等. 深層油氣藏開發中的關鍵力學問題. 中國科學(物理學 力學 天文學), 2018, 48(4):044701 doi: 10.1360/SSPMA2017-00272

    Yao J, Huang Z Q, Liu W Z, et al. Key mechanical problems in the development of deep oil and gas reservoirs. Sci Sin Phys Mech Astron, 2018, 48(4): 044701 doi: 10.1360/SSPMA2017-00272
    [9]
    張玉, 徐衛亞, 趙海斌, 等. 滲流?應力?流變耦合作用下破碎帶砂巖滲透演化規律試驗研究. 中國石油大學學報: 自然科學版, 2014, 38(4):154

    Zhang Y, Xu W Y, Zhao H B, et al. Experimental investigation on permeability evolution of sandstone from fractured zone under coupling action of hydro? mechanical?creep. J China Univ Petrol, 2014, 38(4): 154
    [10]
    Zhang Y, Liu Z B, Xu W Y, et al. Change in the permeability of clastic rock during multi-loading triaxial compressive creep tests. Géotech Lett, 2015, 5(3): 167
    [11]
    Jia C J, Xu W Y, Wang H L, et al. Laboratory investigations of inert gas flow behaviors in compact sandstone. Environ Earth Sci, 2018, 77(6): 245 doi: 10.1007/s12665-018-7423-5
    [12]
    俞縉, 李宏, 陳旭, 等. 滲透壓?應力耦合作用下砂巖滲透率與變形關聯性三軸試驗研究. 巖石力學與工程學報, 2013, 32(6):1203 doi: 10.3969/j.issn.1000-6915.2013.06.014

    Yu J, Li H, Chen X, et al. Triaxial experimental study of associated permeability-deformation of sandstone under hydro-mechanical coupling. Chin J Rock Mech Eng, 2013, 32(6): 1203 doi: 10.3969/j.issn.1000-6915.2013.06.014
    [13]
    Zhang Y, Shao J F, Xu W Y, et al. Creep behaviour and permeability evolution of cataclastic sandstone in triaxial rheological tests. Eur J Environ Civil Eng, 2015, 19(4): 496 doi: 10.1080/19648189.2014.960103
    [14]
    Min K B, Rutqvist J, Tsang C F, et al. Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci, 2004, 41(7): 1191 doi: 10.1016/j.ijrmms.2004.05.005
    [15]
    Liu W Q, Li Y S, Wang B. Gas permeability of fractured sandstone/coal samples under variable confining pressure. Transp Porous Media, 2010, 83(2): 333 doi: 10.1007/s11242-009-9444-8
    [16]
    楊金保, 馮夏庭, 潘鵬志. 考慮應力歷史的巖石單裂隙滲流特性試驗研究. 巖土力學, 2013, 34(6):1629

    Yang J B, Feng X T, Pan P Z. Experimental study of permeability characteristics of single rock fracture considering stress history. Rock Soil Mech, 2013, 34(6): 1629
    [17]
    滿軻, 劉曉麗, 蘇銳, 等. 大尺度單裂隙介質應力?滲流耦合試驗臺架及其滲透系數測試研究. 巖石力學與工程學報, 2015, 34(10):2064

    Man K, Liu X L, Su R, et al. Permeability measuring of large scaled single fractured media with a seepage stress coupling testing apparatus. Chin J Rock Mech Eng, 2015, 34(10): 2064
    [18]
    于洪丹, 陳飛飛, 陳衛忠, 等. 含裂隙巖石滲流力學特性研究. 巖石力學與工程學報, 2012, 31(增刊1): 2788

    Yu H D, Chen F F, Chen W Z, et al. Research on permeability of fractured rock. Chin J Rock Mech Eng, 2012, 31(Suppl 1): 2788
    [19]
    趙延林, 付成成, 汪亦顯, 等. 全應力−應變過程中裂隙灰巖的水−力耦合特性試驗研究. 巖石力學與工程學報, 2016, 35(增刊2): 3763

    Zhao Y L, Fu C C, Wang Y X, et al. Tests on hydro-mechanical coupling characteristics of fractured limestone in complete stress−strain process. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3763
    [20]
    Nooraiepour M, Haile B G, Hellevang H. Compaction and mechanical strength of Middle Miocene mudstones in the Norwegian North Sea-The major seal for the Skade CO2 storage reservoir. Int J Greenhouse Gas Control, 2017, 67: 49 doi: 10.1016/j.ijggc.2017.10.016
    [21]
    Corkum A G, Martin C D. The mechanical behaviour of weak mudstone (Opalinus Clay) at low stresses. Int J Rock Mech Min Sci, 2007, 44(2): 196 doi: 10.1016/j.ijrmms.2006.06.004
    [22]
    茅獻彪, 張連英, 劉瑞雪. 高溫狀態下泥巖單軸蠕變特性及損傷本構關系研究. 巖土工程學報, 2013, 35(增刊2): 30

    Mao X B, Zhang L Y, Liu R X. Creep properties and damage constitutive relation of mudstone under uniaxial compression at high temperature. Chin J Geotech Eng, 2013, 35(Suppl 2): 30
    [23]
    Monfared M, Sulem J, Delage P, et al. A laboratory investigation on thermal properties of the Opalinus claystone. Rock Mech Rock Eng, 2011, 44(6): 735 doi: 10.1007/s00603-011-0171-4
    [24]
    張宏學, 劉衛群, 朱立. 頁巖儲層裂隙滲透率模型和試驗研究. 巖土力學, 2015, 36(3):719

    Zhang H X, Liu W Q, Zhu L. Fracture permeability model and experiments of shale gas reservoirs. Rock Soil Mech, 2015, 36(3): 719
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(21)  / Tables(1)

    Article views (1946) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频