<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WANG Shuai, YU Qing-lei, WANG Ling. Effect of fracture roughness on permeability coefficient under uniaxial compression[J]. Chinese Journal of Engineering, 2021, 43(7): 915-924. doi: 10.13374/j.issn2095-9389.2020.05.26.001
Citation: WANG Shuai, YU Qing-lei, WANG Ling. Effect of fracture roughness on permeability coefficient under uniaxial compression[J]. Chinese Journal of Engineering, 2021, 43(7): 915-924. doi: 10.13374/j.issn2095-9389.2020.05.26.001

Effect of fracture roughness on permeability coefficient under uniaxial compression

doi: 10.13374/j.issn2095-9389.2020.05.26.001
More Information
  • Corresponding author: E-mail: wangshuai@ncst.edu.cn
  • Received Date: 2020-05-26
    Available Online: 2020-07-17
  • Publish Date: 2021-07-01
  • The surface roughness of natural rock-fractures is an important factor affecting the fractured rock mass flow characteristics and further complicating the flow process in the natural fractures. To further study the influence of the fracture surface roughness on the permeability coefficient under uniaxial compression and different hydraulic pressures, 3D printing technology and digital modeling were utilized to prepare the fracture specimens with different fracture surface roughnesses and laboratory permeability tests were conducted through a self-made testing device under different normal pressures and different hydraulic pressures. The experimental results show that in the absence of normal pressure, the rough fracture specimens permeability decreases in a negative exponential form with the increase in the fracture surface roughness. The Forchheimer equation is used to quantitatively describe the nonlinear relationship between seepage flow rate and hydraulic gradients. The regression analyses of the experimental data indicate that the Forchheimer equation provides a good description of the flow process through the rough fracture surface. With the increase in the fracture surface roughness, the linear term coefficient decreases, while the nonlinear term coefficient increases. Under the conditions of fixed normal pressure and normal pressure greater than hydraulic pressure, the fracture specimens permeability decreases linearly with the increase in the fracture surface roughness, and the influence of the fracture surface roughness on the permeability increases with the increase in the hydraulic pressure. The coefficient $\delta $ was used to analyze the difference between the influences of fracture surface roughness on the permeability under normal pressure and without normal pressure. The coefficient $\delta $ increases with the increase in the hydraulic gradients and decreases with the increase in the normal pressure. The results can further clarify the fluid flow through rough fracture surfaces and provide a solid foundation for further research in the fields of rock mass flow characteristics.

     

  • loading
  • [1]
    Rong G, Yang J, Cheng L, et al. Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process. J Hydrol, 2016, 541: 1385 doi: 10.1016/j.jhydrol.2016.08.043
    [2]
    王志榮, 宋沛, 溫震洋, 等. 裂隙性儲層水平井起裂行為的控制. 工程科學學報, 2020, 42(11):1449

    Wang Z R, Song P, Wen Z Y, et al. Control of fracturing behavior of fractured reservoir under horizontal wells. Chin J Eng, 2020, 42(11): 1449
    [3]
    Ju Y, Dong J B, Gao F, et al. Evaluation of water permeability of rough fractures based on a self-affine fractal model and optimized segmentation algorithm. Adv Water Resources, 2019, 129: 99 doi: 10.1016/j.advwatres.2019.05.007
    [4]
    Rezaei Niya S M, Selvadurai A P S. Correlation of joint roughness coefficient and permeability of a fracture. Int J Rock Mech Min Sci, 2019, 113: 150 doi: 10.1016/j.ijrmms.2018.12.008
    [5]
    Zhang X, Chai J R, Qin Y, et al. Experimental study on seepage and stress of single-fracture radiation flow. KSCE J Civil Eng, 2019, 23(3): 1132 doi: 10.1007/s12205-019-1519-7
    [6]
    Zhu J T, Cheng Y Y. Effective permeability of fractal fracture rocks: Significance of turbulent flow and fractal scaling. Int J Heat Mass Transfer, 2018, 116: 549 doi: 10.1016/j.ijheatmasstransfer.2017.09.026
    [7]
    許光祥, 張永興, 哈秋舲. 粗糙裂隙滲流的超立方和次立方定律及其試驗研究. 水利學報, 2003(3):74 doi: 10.3321/j.issn:0559-9350.2003.03.014

    Xu G X, Zhang Y X, Ha Q L. Super-cubic and sub-cubic law of rough fracture seepage and its experiments study. J Hydraulic Eng, 2003(3): 74 doi: 10.3321/j.issn:0559-9350.2003.03.014
    [8]
    速寶玉, 詹美禮, 趙堅. 仿天然巖體裂隙滲流的實驗研究. 巖土工程學報, 1995(5):19 doi: 10.3321/j.issn:1000-4548.1995.05.004

    Su B Y, Zhan M L, Zhao J. Study on fracture seepage in the imitative nature rock. Chin J Geotech Eng, 1995(5): 19 doi: 10.3321/j.issn:1000-4548.1995.05.004
    [9]
    鞠楊, 張欽剛, 楊永明, 等. 巖體粗糙單裂隙流體滲流機制的實驗研究. 中國科學: 技術科學, 2013, 43(10):1144 doi: 10.1360/ze2013-43-10-1144

    Ju Y, Zhang Q G, Yang Y M, et al. An experimental investigation on the mechanism of fluid flow through single rough fracture of rock. Sci Sin Technol, 2013, 43(10): 1144 doi: 10.1360/ze2013-43-10-1144
    [10]
    賀玉龍, 陶玉敬, 楊立中. 不同節理粗糙度系數單裂隙滲流特性試驗研究. 巖石力學與工程學報, 2010, 29(增刊 1):3235

    He Y L, Tao Y J, Yang L Z. Experimental research on hydraulic behaviors in a single joint with various values of JRC. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 3235
    [11]
    段慕白, 李皋, 孟英峰, 等. 不同節理粗糙度系數的裂隙滲流規律研究. 水資源與水工程學報, 2013, 24(5):41 doi: 10.11705/j.issn.1672-643X.2013.05.009

    Duan M B, Li G, Meng Y F, et al. Research on regulation of fracture seepage in different joint roughness coefficients. J Water Resour Water Eng, 2013, 24(5): 41 doi: 10.11705/j.issn.1672-643X.2013.05.009
    [12]
    趙佳偉, 蘭紅波, 楊昆, 等. 電場驅動熔融噴射沉積高分辨率3D打印. 工程科學學報, 2019, 41(5):652

    Zhao J W, Lan H D, Yang K, et al. High-resolution fused deposition 3D printing based on electric-field-driven jet. Chin J Eng, 2019, 41(5): 652
    [13]
    鞠楊, 謝和平, 鄭澤民, 等. 基于3D打印技術的巖體復雜結構與應力場的可視化方法. 科學通報, 2014, 59(32):3109 doi: 10.1360/csb2014-59-32-3109

    Ju Y, Xie H P, Zheng Z M, et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chin Sci Bull, 2014, 59(32): 3109 doi: 10.1360/csb2014-59-32-3109
    [14]
    王培濤, 劉雨, 章亮, 等. 基于3D打印技術的裂隙巖體單軸壓縮特性試驗初探. 巖石力學與工程學報, 2018, 37(2):364

    Wang P T, Liu Y, Zhang L, et al. Preliminary experimental study on uniaxial compressive properties of 3D printed fractured rock models. Chin J Rock Mech Eng, 2018, 37(2): 364
    [15]
    Huang Y B, Zhang Y J, Yu Z W, et al. Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems. Renewable Energy, 2019, 135: 846 doi: 10.1016/j.renene.2018.12.063
    [16]
    Zhang Z Y, Nemcik J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol, 2013, 477: 139 doi: 10.1016/j.jhydrol.2012.11.024
    [17]
    Chen Y D, Lian H J, Liang W G, et al. The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses. Int J Rock Mech Min Sci, 2019, 113: 59 doi: 10.1016/j.ijrmms.2018.11.017
    [18]
    Yin Q, He L X, Jing H W, et al. Quantitative estimates of nonlinear flow characteristics of deformable rough-walled rock fractures with various lithologies. Processes, 2018, 6(9): 149 doi: 10.3390/pr6090149
    [19]
    Zhou J Q, Hu S H, Fang S, et al. Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci, 2015, 80: 202 doi: 10.1016/j.ijrmms.2015.09.027
    [20]
    Barton N, Choubey V. The shear strength of rock joints in theory and practice. Rock Mech, 1977, 10(1-2): 1 doi: 10.1007/BF01261801
    [21]
    張強, 李小春, 胡少斌, 等. 高應力下花崗巖耦合節理在剪切過程中滲透率演化特性. 巖土力學, 2018, 39(10):3641

    Zhang Q, Li X C, Hu S B, et al. Permeability evolution of coupling granite joint during shearing under high-stress condition. Rock Soil Mech, 2018, 39(10): 3641
    [22]
    仵彥卿, 張卓元. 巖體水力學導論. 成都: 西南交通大學出版社, 1994

    Wu Y Q, Zhang Z Y. Introduction to Rock Mass Hydraulics. Chengdu: Southwest Jiaotong University Press, 1994
    [23]
    Wang Z H, Xu C S, Dowd P. A modified cubic law for single-phase saturated laminar flow in rough rock fractures. Int J Rock Mech Min Sci, 2018, 103: 107 doi: 10.1016/j.ijrmms.2017.12.002
    [24]
    潘汝江, 何翔. 巖石斷裂面曲折度影響下的粗糙單裂隙滲流規律. 遼寧工程技術大學學報(自然科學版), 2020, 39(4):293

    Pan R J, He X. Seepage law of rough single fracture under the influence of tortuosity of rock fracture surface. J Liaoning Tech Univ Nat Sci Ed, 2020, 39(4): 293
    [25]
    Chen Z, Qian J Z, Luo S H, et al. Experimental study of friction factor for groundwater flow in a single rough fracture. J Hydrodyn Ser B, 2009, 21(6): 820 doi: 10.1016/S1001-6058(08)60218-8
    [26]
    Rong G, Yang J, Cheng L, et al. A Forchheimer equation-based flow model for fluid flow through rock fracture during shear. Rock Mech Rock Eng, 2018, 51(9): 2777 doi: 10.1007/s00603-018-1497-y
    [27]
    Yin Q, Ma G W, Jing H W, et al. Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study. J Hydrol, 2017, 555
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article views (1940) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频