Citation: | LI Ya-qiong, LIANG kai-yan, WANG Jing-jing, HUANG Xiu-bing. Research progress of mesoporous silica-based composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(10): 1229-1243. doi: 10.13374/j.issn2095-9389.2020.05.25.001 |
[1] |
Faraj K, Khaled M, Faraj J, et al. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable Sustainable Energy Rev, 2020, 119: 109579
|
[2] |
Johar D K, Sharma D, Soni S L, et al. Experimental investigation on latent heat thermal energy storage system for stationary CI engine exhaust. Appl Therm Eng, 2016, 104: 64
|
[3] |
Alva G, Liu L K, Huang X, et al. Thermal energy storage materials and systems for solar energy applications. Renewable Sustainable Energy Rev, 2017, 68: 693
|
[4] |
Czaun M, Kothandaraman J, Goeppert A, et al. Iridium-catalyzed continuous hydrogen generation from formic acid and its subsequent utilization in a fuel cell: Toward a carbon neutral chemical energy storage. ACS Catal, 2016, 6(11): 7475
|
[5] |
Wang T Y, Diao Y H, Zhu T T, et al. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays. Energy Convers Manage, 2017, 142: 230
|
[6] |
Veerakumar C, Sreekumar A. Phase change material based cold thermal energy storage: Materials, techniques and applications–A review. Int J Refrig, 2016, 67: 271
|
[7] |
Sánchez P, Sánchez-Fernandez M V, Romero A, et al. Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta, 2010, 498(1-2): 16
|
[8] |
Nejman A, Cie?lak M, Gajdzicki B, et al. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochim Acta, 2014, 589: 158
|
[9] |
Beyhan B, Paksoy H, Da?gan Y. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Convers Manage, 2013, 74: 446
|
[10] |
劉盼盼, 劉斯奇, 高鴻毅, 等. 羥基磷灰石氣凝膠復合相變材料的制備及其性能. 工程科學學報, 2020, 42(1):120
Liu P P, Liu S Q, Gao H Y, et al. Preparation and properties of hydroxyapatite aerogel composite phase change materials. Chin J Eng, 2020, 42(1): 120
|
[11] |
陶璋, 伍玲梅, 張亞飛, 等. 生物質多孔碳基復合相變材料制備及性能. 工程科學學報, 2020, 42(1):113
Tao Z, Wu L M, Zhang Y F, et al. Preparation and properties of biomass porous carbon-based composite phase change materials. Chin J Eng, 2020, 42(1): 113
|
[12] |
海廣通, 薛祥東, 蘇天琪, 等. 金屬有機骨架與相變芯材相互作用的分子動力學. 工程科學學報, 2020, 42(1):99
Hai G T, Xue X D, Su T Q, et al. Molecular dynamics study on the interaction between metal-organic frameworks and phase change core materials. Chin J Eng, 2020, 42(1): 99
|
[13] |
李亞瓊, 李洋, 席作帥, 等. 茄子衍生多孔碳負載聚乙二醇相變復合材料. 工程科學學報, 2020, 42(1):106
Li Y Q, Li Y, Xi Z S, et al. Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials. Chin J Eng, 2020, 42(1): 106
|
[14] |
Ramakrishnan S, Sanjayan J, Wang X M, et al. A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl Energy, 2015, 157: 85
|
[15] |
Wang C Y, Feng L L, Li W, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Solar Energy Mater Sol Cells, 2012, 105: 21
|
[16] |
Zhou D, Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng, 2011, 31(5): 970
|
[17] |
Huang X B, Chen X, Li A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J, 2019, 356: 641
|
[18] |
Zhang L J, Shi H F, Li W W, et al. Structure and thermal performance of poly (ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials. Thermochim Acta, 2013, 570: 1
|
[19] |
Gao H Y, Bo L J, Liu P P, et al. Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials. Sol Energy Mater Sol Cells, 2019, 201: 110122
|
[20] |
Feng D L, Feng Y H, Qiu L, et al. Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renewable Sustainable Energy Rev, 2019, 109: 578
|
[21] |
王靜靜, 徐小亮, 梁凱彥, 等. 多孔基定形復合相變材料傳熱性能提升研究進展. 工程科學學報, 2020, 42(1):26
Wang J J, Xu X L, Liang K Y, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review. Chin J Eng, 2020, 42(1): 26
|
[22] |
Li M, Shi J B. Review on micropore grade inorganic porous medium based form stable composite phase change materials: Preparation, performance improvement and effects on the properties of cement mortar. Constr Build Mater, 2019, 194: 287
|
[23] |
Zhang J, Wang S S, Zhang S D, et al. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage. J Phys Chem C, 2011, 115(41): 20061
|
[24] |
Wang W, Wang C Y, Li W, et al. Novel phase change behavior of n-eicosane in nanoporous silica: emulsion template preparation and structure characterization using small angle X-ray scattering. Phys Chem Chem Phys, 2013, 15(34): 14390
|
[25] |
Xie Z Y, Bai L, Huang S W, et al. New strategy for surface functionalization of periodic mesoporous silica based on meso-HSiO1.5. J Am Chem Soc, 2014, 136(4): 1178
|
[26] |
Mitran R A, Berger D, Munteanu C, et al. Evaluation of different mesoporous silica supports for energy storage in shape-stabilized phase change materials with dual thermal responses. J Phys Chem C, 2015, 119(27): 15177
|
[27] |
Li M, Wang W, Zhang Z G, et al. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage. Ind Eng Chem Res, 2017, 56(12): 3297
|
[28] |
Rashidi S, Esfahani J A, Karimi N. Porous materials in building energy technologies—A review of the applications, modelling and experiments. Renewable Sustainable Energy Rev, 2018, 91: 229
|
[29] |
Sar? A, Bicer A, Al-Ahmed A, et al. Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage. Sol Energy Mater Sol Cells, 2018, 179: 353
|
[30] |
Zhang L, Zhang P, Wang F, et al. Phase change materials based on polyethylene glycol supported by graphene-based mesoporous silica sheets. Appl Therm Eng, 2016, 101: 217
|
[31] |
Li H Q, Chen H S, Li X Y, et al. Development of thermal energy storage composites and prevention of PCM leakage. Appl Energy, 2014, 135: 225
|
[32] |
Matei C, Buhǎl?eanu L, Berger D, et al. Functionalized mesoporous silica as matrix for shape-stabilized phase change materials. Int J Heat Mass Transfer, 2019, 144: 118699
|
[33] |
Liu P P, Gao H Y, Chen X, et al. In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Compos Part B-Eng, 2020, 195: 108072
|
[34] |
Feng L L, Zhao W, Zheng J, et al. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Sol Energy Mater Sol Cells, 2011, 95(12): 3550
|
[35] |
Mitran R A, Berger D, Matei C. Phase change materials based on mesoporous silica. Curr Org Chem, 2018, 22(27): 2644
|
[36] |
Aftab W, Huang X Y, Wu W H, et al. Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci, 2018, 11(6): 1392
|
[37] |
Su W G, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable Sustainable Energy Rev, 2015, 48: 373
|
[38] |
Pan L, Tao Q H, Zhang S D, et al. Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol Energy Mater Sol Cells, 2012, 98: 66
|
[39] |
Dutil Y, Rousse D R, Salah N B, et al. A review on phase-change materials: mathematical modeling and simulations. Renewable Sustainable Energy Rev, 2011, 15(1): 112
|
[40] |
Zhang Z J, Wang J X, Tang X, et al. Comparison study between mesoporous silica nanoscale microsphere and active carbon used as the matrix of shape-stabilized phase change material. Sci Rep, 2019, 9: 16056
|
[41] |
Zhang J R, Feng Y H, Yuan H B, et al. Thermal properties of C17H36/MCM-41 composite phase change materials. Comput Mater Sci, 2015, 109: 300
|
[42] |
Sundarram S S, Li W. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams. Appl Therm Eng, 2014, 64(1-2): 147
|
[43] |
Liu S, Ma G X, Xie S L, et al. Diverting the phase transition behaviour of adipic acid via mesoporous silica confinement. RSC Adv, 2016, 6(113): 111787
|
[44] |
Lazarenko M M, Alekseev A N, Alekseev S A, et al. Nanocrystallite–liquid phase transition in porous matrices with chemically functionalized surfaces. Phys Chem Chem Phys, 2019, 21(44): 24674
|
[45] |
Wang X, Wei Y T, Zhang D X, et al. Phase behaviors of n-octacosane in nanopores: Role of pore size and morphology. Thermochim Acta, 2020, 690: 178687
|
[46] |
Mehryan S A M, Vaezi M, Sheremet M, et al. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int J Heat Mass Transfer, 2020, 151: 119385
|
[47] |
Qian T T, Li J H, Min X, et al. Integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs in mesoporous silica for form-stable phase change materials. ACS Sustainable Chem Eng, 2018, 6(1): 897
|
[48] |
Han L P, Ma G X, Xie S L, et al. Preparation and characterization of the shape-stabilized phase change material based on sebacic acid and mesoporous MCM-41. J Therm Anal Calorim, 2017, 130(2): 935
|
[49] |
Mitran R A, Berger D, Matei C. Improving thermal properties of shape-stabilized phase change materials containing lauric acid and mesocellular foam silica by assessing thermodynamic properties of the non-melting layer. Thermochim Acta, 2018, 660: 70
|
[50] |
Sui J, Zhang S Q, Zhai M, et al. Polymorphism of a hexadecane–heptadecane binary system in nanopores. RSC Adv, 2017, 7(18): 10737
|
[51] |
Yan X, Gao C F, Wang T B, et al. New phase behavior of n-undecane–tridecane mixtures confined in porous materials with pore sizes in a wide mesoscopic range. RSC Adv, 2013, 3(39): 18028
|
[52] |
Wang L P, Sui J, Zhai M, et al. Physical control of phase behavior of hexadecane in nanopores. J Phys Chem C, 2015, 119(32): 18697
|
[53] |
張東, 吳科如. 孔結構對有機相變物質相變行為的調節作用. 同濟大學學報:自然科學版, 2004, 32(9):1163
Zhang D, Wu K R. Tuning effect of porous structure on phase changing behavior of organic phase changing matters. J Tongji Univ Nat Sci Ed, 2004, 32(9): 1163
|
[54] |
Yang C C, Li J C, Jiang Q. Temperature–pressure phase diagram of silicon determined by Clapeyron equation. Solid State Commun, 2004, 129(7): 437
|
[55] |
Min X, Fang M H, Huang Z H, et al. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci Rep, 2015, 5: 12964
|
[56] |
Gao J K, Tao W W, Chen D, et al. High performance shape-stabilized phase change material with nanoflower-like wrinkled mesoporous silica encapsulating polyethylene glycol: preparation and thermal properties. Nanomaterials, 2018, 8(6): 385
|
[57] |
Kadoono T, Ogura M. Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3. Phys Chem Chem Phys, 2014, 16(12): 5495
|
[58] |
Chen D, Chen Y, Guo X W, et al. Mesoporous silica nanoparticles with wrinkled structure as the matrix of myristic acid for the preparation of a promising new shape-stabilized phase change material via simple method. RSC Adv, 2018, 8(60): 34224
|
[59] |
Serrano A, del Campo J M, Peco N, et al. Influence of gelation step for preparing PEG–SiO2 shape-stabilized phase change materials by sol–gel method. J Sol-Gel Sci Technol, 2019, 89(3): 731
|
[60] |
Zhu Y L, Qin Y S, Liang S E, et al. Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling. Appl Energy, 2019, 250: 98
|
[61] |
Qian T T, Li J H, Min X, et al. Radial-like mesoporous silica sphere: A promising new candidate of supporting material for storage of low-, middle-, and high-temperature heat. Energy, 2016, 112: 1074
|
[62] |
Wang L Y, Tsai P S, Yang Y M. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion. J Microencapsul, 2006, 23(1): 3
|
[63] |
Zhang H Z, Sun S Y, Wang X D, et al. Fabrication of microencapsulated phase change materials based on n-octadecane core and silica shell through interfacial polycondensation. Colloids Surf A, 2011, 389(1-3): 104
|
[64] |
Zhang X Y, Wang X D, Wu D Z. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy, 2016, 111: 498
|
[65] |
Wei J, Wang T, Li H, et al. Design and synthesis of organo-silica shell based dual-functional microencapsulated phase change material for thermal regulating systems. Chem Pap, 2018, 72(4): 1055
|
[66] |
Liu H, Niu J F, Wang X D, et al. Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement. Energy, 2019, 188: 116075
|
[67] |
Fan S, Gao H Y, Dong W J, et al. Shape-stabilized phase change materials based on stearic acid and mesoporous hollow SiO2 microspheres (SA/SiO2) for thermal energy storage. Eur J Inorg Chem, 2017, 2017(14): 2138
|
[68] |
He L H, Li J R, Zhou C, et al. Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods. Sol Energy, 2014, 103: 448
|
[69] |
Tang B T, Cui J S, Wang Y M, et al. Facile synthesis and performances of PEG/SiO2 composite form-stable phase change materials. Sol Energy, 2013, 97: 484
|
[70] |
Tang B T, Wang Y M, Qiu M G, et al. A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage. Sol Energy Mater Sol Cells, 2014, 123: 7
|
[71] |
Chen Y, Zhang X J, Wang B F, et al. Fabrication and characterization of novel shape-stabilized stearic acid composite phase change materials with tannic-acid-templated mesoporous silica nanoparticles for thermal energy storage. RSC Adv, 2017, 7(26): 15625
|
[72] |
Chen Y, Zhu Y Y, Wang J B, et al. Novel shape-stabilized phase change materials composed of polyethylene glycol/nonsurfactant-templated mesoporous silica: Preparation and thermal properties. JOM, 2017, 69(12): 2774
|
[73] |
Zhang Y Z, Zheng S L, Zhu S Q, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers Manage, 2018, 171: 361
|
[74] |
Jal P K, Patel S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta, 2004, 62(5): 1005
|
[75] |
Li L Y, Li N K, Tu Q, et al. Functional modification of silica through enhanced adsorption of elastin-like polypeptide block copolymers. Biomacromolecules, 2018, 19(2): 298
|
[76] |
Bagwe R P, Hilliard L R, Tan W H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22(9): 4357
|
[77] |
Feng D L, Feng Y H, Li P, et al. Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance. Microporous Mesoporous Mater, 2020, 292: 109756
|
[78] |
Gao J K, Zhou J, Zhang X J, et al. Facile functionalized mesoporous silica using biomimetic method as new matrix for preparation of shape-stabilized phase-change material with improved enthalpy. Int J Energy Res, 2019, 43(14): 8649
|
[79] |
Wang J J, Yang M, Lu Y F, et al. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy, 2016, 19: 78
|
[80] |
Wang Y C, Zhang L Y, Tao S Y, et al. Phase change in modified hierarchically porous monolith: An extra energy increase. Microporous Mesoporous Mater, 2014, 193: 69
|
[81] |
Huang X Y, Liu Z P, Xia W, et al. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels. J Mater Chem A, 2015, 3(5): 1935
|