Citation: | HUANG Yu, CHENG Guo-guang, BAO Dao-hua. Current status of the characteristics and control of primary carbides in H13 steel[J]. Chinese Journal of Engineering, 2020, 42(10): 1244-1253. doi: 10.13374/j.issn2095-9389.2020.05.24.002 |
[1] |
Starling C M D, Branco J R T. Thermal fatigue of hot work tool steel with hard coatings. Thin Solid Films, 1997, 308-309: 436 doi: 10.1016/S0040-6090(97)00600-7
|
[2] |
李國彬, 凌超, 李香芝. 4Cr5MoSiV1鋼和3Cr2W8V鋼熱疲勞壽命的研究. 鋼鐵, 1997, 32(4):51
Li G B, Ling C, Li X Z. Study on thermal fatigue of 4Cr5MoSiV1 and 3Cr2W8V steels. Iron Steel, 1997, 32(4): 51
|
[3] |
吉田潤二, 勝亦正昭, 山崎善夫. 冷間金型用鋼の疲労壽命に及ぼす-次炭化物の影響. 鉄と鋼, 1998, 84(1):79 doi: 10.2355/tetsutohagane1955.84.1_79
Yoshida J, Katsumata M, Yamazaki Y. Effect of primary carbide on fatigue life in die steel for cold working. Tetsu-To-Hagane, 1998, 84(1): 79 doi: 10.2355/tetsutohagane1955.84.1_79
|
[4] |
尾崎公造. 冷間金型用鋼の疲労壽命に及ぼす-次炭化物分布の影響. 電気製鋼, 2005, 76(4):249 doi: 10.4262/denkiseiko.76.249
Ozaki K. Effect of the distribution of primary carbide on fatigue strength of cold work die steels. Denki-Seiko, 2005, 76(4): 249 doi: 10.4262/denkiseiko.76.249
|
[5] |
Xie Y, Cheng G G, Chen L, et al. Mechanism of generation of large (Ti, Nb, V)(C, N)-type precipitates in H13+Nb tool steel. Int J Miner Metall Mater, 2016, 23(11): 1264 doi: 10.1007/s12613-016-1348-3
|
[6] |
Xie Y, Cheng G G, Chen L, et al. The degeneration of the heterogeneous nucleation for the large precipitates (Ti, Nb, V)(C, N) in ESR H13+Nb tool steel with low-MgO slag. Metall Res Technol, 2016, 113(2): 206 doi: 10.1051/metal/2016002
|
[7] |
劉建華, 陽燕, 莊昌凌, 等. H13模鑄鋼錠中夾雜物的分布解剖. 北京科技大學學報, 2011, 33(增刊1): 179
Liu J H, Yang Y, Zhuang C L, et al. Inclusion distribution in H13 ingots. J Univ Sci Technol Beijing, 2011, 33(Suppl1): 179
|
[8] |
Li J, Li J, Wang L L, et al. Study on carbide in forged and annealed H13 hot work die steel. High Temp Mater Processes, 2015, 34(6): 593
|
[9] |
Qi Y F, Li J, Shi C B, et al. Effect of directional solidification of electroslag remelting on the microstructure and primary carbides in an austenitic hot-work die steel. J Mater Process Technol, 2017, 249: 32 doi: 10.1016/j.jmatprotec.2017.05.034
|
[10] |
Huang Y, Cheng G G, Li S J, et al. Precipitation behavior of large primary carbides in cast H13 steel. Steel Res Int, 2019, 90(7): 1900035 doi: 10.1002/srin.201900035
|
[11] |
Mao M T, Guo H J, Wang F, et al. Chemical composition and structural identification of primary carbides in as-cast H13 steel. Int J Miner Metall Mater, 2019, 26(7): 839 doi: 10.1007/s12613-019-1796-7
|
[12] |
Mao M T, Wang F, Sun X L, et al. In situ research of partial melt in as-cast H13 steel at elevated temperature. Ironmaking Steelmaking, 2020, 47(2): 159 doi: 10.1080/03019233.2018.1498760
|
[13] |
Xie Y, Cheng G G, Chen L, et al. Characteristics and generating mechanism of large precipitates in Nb–Ti–microalloyed H13 tool steel. ISIJ Int, 2016, 56(6): 995 doi: 10.2355/isijinternational.ISIJINT-2015-569
|
[14] |
Xie Y, Cheng G G, Meng X L, et al. Precipitation behavior of primary precipitates in Ti–microalloyed H13 tool steel. ISIJ Int, 2016, 56(11): 1996 doi: 10.2355/isijinternational.ISIJINT-2016-199
|
[15] |
Xie Y, Cheng G G, Chen L, et al. Generating mechanism of large heterogeneous carbonitrides with multiple layers in H13+Nb bar. Steel Res Int, 2017, 88(1): 1600119 doi: 10.1002/srin.201600119
|
[16] |
Xie Y, Cheng G G, Chen L, et al. The characteristics and generating mechanism of large precipitates in Ti-containing H13 tool steel. High Temp Mater Processes, 2017, 36(2): 189 doi: 10.1515/htmp-2015-0177
|
[17] |
Huang Y, Cheng G G, Li S J, et al. Distribution characteristics and thermal stability of primary carbide in cast Ce–H13 steel. ISIJ Int, 2020, 60(2): 267 doi: 10.2355/isijinternational.ISIJINT-2019-364
|
[18] |
裴悅凱, 馬黨參, 劉寶石, 等. 鍛造比對H13鋼組織和力學性能的影響. 鋼鐵, 2012, 47(2):81
Pei Y K, Ma D S, Liu B S, et al. Effect of forging ratio on microstructure and mechanical property of H13 steel. Iron Steel, 2012, 47(2): 81
|
[19] |
Xie Y, Cheng G G, Meng X L, et al. Thermal stability of primary elongated V-rich carbonitrides in H13 tool steel. Metall Res Technol, 2017, 114(2): 206 doi: 10.1051/metal/2016072
|
[20] |
Mesquita R A, Barbosa C A, Morales E V, et al. Effect of silicon on carbide precipitation after tempering of H11 hot work steels. Metall Mater Trans A, 2011, 42(2): 461 doi: 10.1007/s11661-010-0430-0
|
[21] |
Mesquita R A, Kestenbach H J. On the effect of silicon on toughness in recent high quality hot work steels. Mater Sci Eng A, 2011, 528(13-14): 4856 doi: 10.1016/j.msea.2011.02.065
|
[22] |
Delagnes D, Lamesle P, Mathon M H, et al. Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5% Cr tempered martensitic steel. Mater Sci Eng A, 2005, 394(1-2): 435 doi: 10.1016/j.msea.2004.11.050
|
[23] |
須藤興一. 5%Cr系熱間ダイス鋼の特性に及ぼすC, Si, Mn, Cr, Mo, Vの影響. 電気製鋼, 1989, 60(4):367 doi: 10.4262/denkiseiko.60.367
Sudoh K I. Influence of C, Si, Mn, Cr, Mo and V on the characteristics of 5% chromium hot-work die steel. Denki-Seiko, 1989, 60(4): 367 doi: 10.4262/denkiseiko.60.367
|
[24] |
海野正英, 瀬羅知暁, 近藤邦夫, 等. 熱間工具鋼の焼戻し硬さ, 高溫強度と靭性に及ぼすシリコン量の影響. 鉄と鋼, 2003, 89(6):673 doi: 10.2355/tetsutohagane1955.89.6_673
Umino M, Sera T, Kondo K, et al. Effect of silicon content on tempered hardness, high temperature strength and toughness of hot working tool steels. Tetsu-to-Hagane, 2003, 89(6): 673 doi: 10.2355/tetsutohagane1955.89.6_673
|
[25] |
藤井利光, 松田幸紀. 熱間工具鋼の被削性におよぼすSi量の影響. 電気製鋼, 2000, 71(2):119 doi: 10.4262/denkiseiko.71.119
Fujii T, Matsuda Y. Effect of Si content on the machinability of hot working die steels. Denki-Seiko, 2000, 71(2): 119 doi: 10.4262/denkiseiko.71.119
|
[26] |
藤井利光, 松田幸紀. 熱間工具鋼の被削性におよぼす Si および硬さの影響. 電気製鋼, 2003, 74(2):83 doi: 10.4262/denkiseiko.74.83
Fujii T, Matsuda Y. Effect of Si content and hardness on the machinability of hot working die steels. Denki-Seiko, 2003, 74(2): 83 doi: 10.4262/denkiseiko.74.83
|
[27] |
Mao M T, Guo H J, Wang F, et al. Effect of cooling rate on the solidification microstructure and characteristics of primary carbides in H13 steel. ISIJ Int, 2019, 59(5): 848 doi: 10.2355/isijinternational.ISIJINT-2018-524
|
[28] |
河野正道. 粒界での炭化物の歴史とそのSKD61の衝撃特性への影響. 電気製鋼, 2018, 89(2): 101
History of carbide at grain boundary and its influence on impact property of SKD61. Denki-Seiko, 2018, 89(2): 101
|
[29] |
Wu Z, Li J, Shi C B, et al. Effect of magnesium addition on inclusions in H13 die steel. Int J Miner Metall Mater, 2014, 21(11): 1062 doi: 10.1007/s12613-014-1010-x
|
[30] |
Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel. Can Metall Q, 2016, 55(3): 321 doi: 10.1179/1879139515Y.0000000030
|
[31] |
Takata R, Yang J, Kuwabara M. Characteristics of inclusions generated during Al–Mg complex deoxidation of molten steel. ISIJ Int, 2007, 47(10): 1379 doi: 10.2355/isijinternational.47.1379
|
[32] |
He B, Li J, Shi C B, et al. Effect of Mg addition on carbides in H13 steel during electroslag remelting process. Metall Res Technol, 2018, 115(5): 501 doi: 10.1051/metal/2018071
|
[33] |
Wang L M, Lin Q, Ji J W, et al. New study concerning development of application of rare earth metals in steels. J Alloys Compd, 2006, 408-412: 384 doi: 10.1016/j.jallcom.2005.04.090
|
[34] |
宋致褔, 徐仁敎, 林炫均. 5Cr? ?????? ????? ??? ????? ?????. ?? ?? ?? ???, 1996, 34(8):1021
Song C B, Seo I K, Park H G. Effect of rare earth metals addition on the solidification characteristics of 5Cr hot working tool steel. J Korean Inst Met Mater, 1996, 34(8): 1021
|
[35] |
宋致褔, 蘇鎭王, 林炫均. 5Cr? ?????? ???? ??? ??? ????? ??? ??. ?? ?? ?? ???, 1995, 33(8):1010
Song C B, So J W, Park H G. Effect of rare earth metals addition on the impact toughness and machinability of 5Cr hot working tool steel. J Korean Inst Met Mater, 1995, 33(8): 1010
|
[36] |
Lan J, He J J, Ding W J, et al. Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C–5Cr–1.2Mo–1.0V steel. ISIJ Int, 2000, 40(12): 1275 doi: 10.2355/isijinternational.40.1275
|
[37] |
Huang Y, Cheng G G, Li S J, et al. Effect of cerium on the behavior of inclusions in H13 steel. Steel Res Int, 2018, 89(12): 1800371 doi: 10.1002/srin.201800371
|
[38] |
Fu H G, Xiao Q, Li Y X. A study of the microstructures and properties of Fe–V–W–Mo alloy modified by rare earth. Mater Sci Eng A, 2005, 395(1-2): 281 doi: 10.1016/j.msea.2004.12.029
|
[39] |
Yang J, Zou D N, Li X M, et al. Effect of rare earth on microstructures and properties of high speed steel with high carbon content. J Iron Steel Res Int, 2007, 14(1): 47 doi: 10.1016/S1006-706X(07)60011-9
|
[40] |
Liu Q X, Lu D P, Lu L, et al. Effect of mischmetal on as-cast microstructure and mechanical properties of M2 high speed steel. J Iron Steel Res Int, 2015, 22(3): 245 doi: 10.1016/S1006-706X(15)60037-1
|
[41] |
Wang M J, Li Y M, Wang Z X, et al. Effect of rare earth elements on the thermal cracking resistance of high speed steel rolls. J Rare Earths, 2011, 29(5): 489 doi: 10.1016/S1002-0721(10)60485-1
|
[42] |
Xu Z M. Influence of Ce and Al on nodularization of eutectic in austenite–bainite steel. Mater Res Bull, 2000, 35(8): 1261 doi: 10.1016/S0025-5408(00)00319-6
|
[43] |
Gao J Z, Fu P X, Liu H W, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel. Metals, 2015, 5(1): 383 doi: 10.3390/met5010383
|
[44] |
Zeli? K, Burja J, McGuiness P J, et al. Effect of rare earth elements on the morphology of eutectic carbides in AISI D2 tool steels: experimental and modelling approaches. Sci Rep, 2018, 8: 9233 doi: 10.1038/s41598-018-27658-w
|