<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
GUO De-yong, ZHAO Jie-chao, ZHU Tong-gong, ZHANG Chao. Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering, 2020, 42(12): 1613-1623. doi: 10.13374/j.issn2095-9389.2020.05.19.001
Citation: GUO De-yong, ZHAO Jie-chao, ZHU Tong-gong, ZHANG Chao. Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering, 2020, 42(12): 1613-1623. doi: 10.13374/j.issn2095-9389.2020.05.19.001

Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam

doi: 10.13374/j.issn2095-9389.2020.05.19.001
More Information
  • Corresponding author: E-mail: kjkfg@cumtb.edu.cn
  • Received Date: 2020-05-19
  • Publish Date: 2020-12-25
  • This paper focuses on the radius of coal failure zones under cumulative blasting with shaped charge. Based on the analysis of the mutual superposition effect of the explosion stress waves during the simultaneous detonation of two blastholes, a numerical analysis model of the double-hole cumulative blasting with linear shaped charge was established. Additionally, the propagation characteristics of the stress wave during the simultaneous detonation of two blastholes, stress state of the coal body, mechanism of coal crack propagation and coalescence, and influence of the stress wave superposition effect on crack propagation were evaluated. Results show that the stress wave superposition effect induces the formation of a pressure equalization zone in the partial region of the middle section of the two blastholes and its adjacent regions. This occurrence forces the radial cracks of the two blastholes to turn, and they cannot connect with each other, leading to the formation of a gap blank zone between the two blastholes. After the directional cracks generated under cumulative blasting load coalesce, the collision of the explosive gases produced from the two blastholes further promotes the expansion of the cracks in the directional crack coalescence zone and eventually penetrates the gap blank zone. Field test results of deep-hole cumulative blasting in coal seams show that the explosion stress waves from the blastholes in the opposite side promotes the propagation of the blasting-induced crack on the left or right side of the two blastholes. This propagation first increases and then decreases as it moves away from the blasthole. Between the two blastholes, the stress wave superposition effect from the two blastholes inhibits the propagation of the cracks in some areas, resulting in a W-like fluctuation in the degree of improvement of the gas drainage effect at different positions in the area between the two blastholes.

     

  • loading
  • [1]
    郭德勇, 趙杰超, 張超, 等. 煤層深孔聚能爆破控制孔作用機制研究. 巖石力學與工程學報, 2018, 37(4):919

    Guo D Y, Zhao J C, Zhang C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam. Chin J Rock Mech Eng, 2018, 37(4): 919
    [2]
    褚懷保, 葉紅宇, 楊小林, 等. 基于損傷累積的爆破振動傳播規律試驗研究. 振動與沖擊, 2016, 35(2):173

    Chu H B, Ye H Y, Yang X L, et al. Experiments on propagation of blasting vibration based on damage accumulation. J Vib Shock, 2016, 35(2): 173
    [3]
    Singh P K, Roy M P, Paswan R K. Controlled blasting for long term stability of pit-walls. Int J Rock Mech Min Sci, 2014, 70: 388 doi: 10.1016/j.ijrmms.2014.05.006
    [4]
    盧文波, 李海波, 陳明, 等. 水電工程爆破振動安全判據及應用中的幾個關鍵問題. 巖石力學與工程學報, 2009, 28(8):1513 doi: 10.3321/j.issn:1000-6915.2009.08.001

    Lu W B, Li H B, Chen M, et al. Safety criteria of blasting vibration in hydropower engineering and several key problems in their application. Chin J Rock Mech Eng, 2009, 28(8): 1513 doi: 10.3321/j.issn:1000-6915.2009.08.001
    [5]
    李啟月, 李夕兵, 范作鵬, 等. 深孔爆破一次成井技術與應用實例分析. 巖石力學與工程學報, 2013, 32(4):664 doi: 10.3969/j.issn.1000-6915.2013.04.003

    Li Q Y, Li X B, Fan Z P, et al. One time deep hole raise blasting technology and case study. Chin J Rock Mech Eng, 2013, 32(4): 664 doi: 10.3969/j.issn.1000-6915.2013.04.003
    [6]
    梁冰, 丁學丞, 孫維吉, 等. 低透氣性煤層雙孔預裂爆破增透數值模擬. 爆破, 2014, 31(2):84 doi: 10.3963/j.issn.1001-487X.2014.02.018

    Liang B, Ding X C, Sun W J, et al. Numerical simulation of increasing permeability by double hole presplitting blasting in low permeability coal seam. Blasting, 2014, 31(2): 84 doi: 10.3963/j.issn.1001-487X.2014.02.018
    [7]
    Miao Y S, Li X J, Yan H H, et al. Research and application of a symmetric bilinear initiation system in rock blasting. Int J Rock Mech Min Sci, 2018, 102: 52 doi: 10.1016/j.ijrmms.2018.01.017
    [8]
    Zhao J J, Zhang Y, Ranjith P G. Numerical simulation of blasting-induced fracture expansion in coal masses. Int J Rock Mech Min Sci, 2017, 100: 28 doi: 10.1016/j.ijrmms.2017.10.015
    [9]
    Hu S B, Wang E Y, Kong X G. Damage and deformation control equation for gas-bearing coal and its numerical calculation method. J Nat Gas Sci Eng, 2015, 25: 166 doi: 10.1016/j.jngse.2015.04.039
    [10]
    Ataei M, Kamali M. Prediction of blast-induced vibration by adaptive neuro-fuzzy inference system in Karoun 3 power plant and dam. J Vib Control, 2013, 19(12): 1906 doi: 10.1177/1077546312444769
    [11]
    Yue Z W, Yang L Y, Wang Y B. Experimental study of crack propagation in polymethyl methacrylate material with double holes under the directional controlled blasting. Fatigue Fract Eng Mater Struct, 2013, 36(8): 827 doi: 10.1111/ffe.12049
    [12]
    Ramulu M, Chakraborty A K, Sitharam T G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project – A case study. Tunnell Undergr Space Technol, 2009, 24(2): 208 doi: 10.1016/j.tust.2008.08.002
    [13]
    閆長斌. 基于聲波頻譜特征的巖體爆破累積損傷效應分析. 巖土力學, 2017, 38(9):2721

    Yan C B. Analysis of cumulative damage effect of rock mass blasting based on acoustic frequency spectrum characters. Rock Soil Mech, 2017, 38(9): 2721
    [14]
    費鴻祿, 苑俊華. 基于爆破累積損傷的邊坡穩定性變化研究. 巖石力學與工程學報, 2016, 35(增刊2): 3868

    Fei H L, Yuan J H. Study of slope stability based on blasting cumulative damage. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3868
    [15]
    朱振海, 曲廣建, 楊永琦, 等. 起爆時差對孔間裂縫貫穿影響的動光彈研究. 爆炸與沖擊, 1991, 11(4):346

    Zhu Z H, Qu G J, Yang Y Q, et al. Dynamic photoelastic studies in the influence of delay ignition on the penetration of cracks between boreholes. Explos Shock Waves, 1991, 11(4): 346
    [16]
    楊仁樹, 王雁冰, 楊立云, 等. 雙孔切槽爆破裂紋擴展的動焦散實驗. 中國礦業大學學報, 2012, 41(6):868

    Yang R S, Wang Y B, Yang L Y, et al. Dynamic caustic experimental in two borehole study of crack propagation cut blasting. J China Univ Min Technol, 2012, 41(6): 868
    [17]
    李清, 于強, 朱各勇, 等. 不同藥量的切縫藥包雙孔爆破裂紋擴展規律試驗. 巖石力學與工程學報, 2017, 36(9):2205

    Li Q, Yu Q, Zhu G Y, et al. Experimental study of crack propagation under two-hole slotted cartridge blasting with different amounts of charge. Chin J Rock Mech Eng, 2017, 36(9): 2205
    [18]
    魏晨慧, 朱萬成, 白羽, 等. 不同節理角度和地應力條件下巖石雙孔爆破的數值模擬. 力學學報, 2016, 48(4):926 doi: 10.6052/0459-1879-15-259

    Wei C H, Zhu W C, Bai Y, et al. Numerical simulation on two-hole blasting of rock under different joint angles and in-situ stress conditions. Chin J Theor Appl Mech, 2016, 48(4): 926 doi: 10.6052/0459-1879-15-259
    [19]
    郭德勇, 趙杰超, 呂鵬飛, 等. 煤層深孔聚能爆破有效致裂范圍探討. 工程科學學報, 2019, 41(5):582

    Guo D Y, Zhao J C, Lü P F, et al. Effective fracture zone under deep-hole cumulative blasting in coal seam. Chin J Eng, 2019, 41(5): 582
    [20]
    趙陽升, 馮增朝, 萬志軍. 巖體動力破壞的最小能量原理. 巖石力學與工程學報, 2003, 22(11):1781 doi: 10.3321/j.issn:1000-6915.2003.11.005

    Zhao Y S, Feng Z C, Wan Z J. Least energy priciple of dynamical failure of rock mass. Chin J Rock Mech Eng, 2003, 22(11): 1781 doi: 10.3321/j.issn:1000-6915.2003.11.005
    [21]
    趙陽升, 楊棟, 胡耀青, 等. 低滲透煤儲層煤層氣開采有效技術途徑的研究. 煤炭學報, 2001, 26(5):455 doi: 10.3321/j.issn:0253-9993.2001.05.002

    Zhao Y S, Yang D, Hu Y Q, et al. Study on the effective technology way for mining methane in low permeability coal seam. J China Coal Soc, 2001, 26(5): 455 doi: 10.3321/j.issn:0253-9993.2001.05.002
    [22]
    Hallquist J O. LS-DYNA Keyword User’s Manual. California: Livermore Software Technology Corporation, 2007
    [23]
    郭德勇, 趙杰超, 呂鵬飛, 等. 煤層深孔聚能爆破動力效應分析與應用. 工程科學學報, 2016, 38(12):1681

    Guo D Y, Zhao J C, Lü P F, et al. Dynamic effects of deep-hole cumulative blasting in coal seam and its application. Chin J Eng, 2016, 38(12): 1681
    [24]
    劉健, 劉澤功, 高魁, 等. 深孔定向聚能爆破增透機制模擬試驗研究及現場應用. 巖石力學與工程學報, 2014, 33(12):2490

    Liu J, Liu Z G, Gao K, et al. Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng, 2014, 33(12): 2490
    [25]
    穆朝民, 王海露, 黃文堯, 等. 高瓦斯低透氣性煤體定向聚能爆破增透機制. 巖土力學, 2013, 34(9):2496

    Mu C M, Wang H L, Huang W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech, 2013, 34(9): 2496
    [26]
    趙健健. 堅硬厚煤層分區域擾動破壞機理及弱化方法[學位論文]. 北京: 中國礦業大學(北京), 2018

    Zhao J J. Failure Mechanism of Hard Thick Coal under Various Types of Disturbance at the Front of Mining Face[Dissertation]. Beijing: China University of Mining & Technology (Beijing), 2018
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)

    Article views (1480) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频