<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
WANG Yong-jin, SONG Ren-bo. Microstructure evolution during remelting of 9Cr18 semisolid billet prepared by sloping plate method[J]. Chinese Journal of Engineering, 2021, 43(2): 248-254. doi: 10.13374/j.issn2095-9389.2020.05.12.003
Citation: WANG Yong-jin, SONG Ren-bo. Microstructure evolution during remelting of 9Cr18 semisolid billet prepared by sloping plate method[J]. Chinese Journal of Engineering, 2021, 43(2): 248-254. doi: 10.13374/j.issn2095-9389.2020.05.12.003

Microstructure evolution during remelting of 9Cr18 semisolid billet prepared by sloping plate method

doi: 10.13374/j.issn2095-9389.2020.05.12.003
More Information
  • Semisolid processing is a new near-net-shape manufacturing process suitable for fabricating components with complex shapes. Semisolid billet remelting is a key process performed prior to the subsequent semisolid thixoforming. Understanding the remelting behavior will provide significant theoretical guidance for the semisolid thixoforming process. In this study, during remelting, we investigated the microstructural evolution of a 9Cr18 semisolid billet prepared by the sloping plate method. The microstructures of 9Cr18 specimens for a semisolid billet and traditional casting ingot were discussed. The effects of the initial microstructure and remelting temperature on the remelting behavior were also clarified. The microstructural evolution and remelting behavior were observed via optical microscopy, scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The results show that an excellent 9Cr18 semisolid billet can be obtained via the sloping plate method. Forced convection through the sloping plate was found to play a key role in breaking the continuous distribution of dendrites. The typical microstructure was found to exhibit a primary solid austenite globular grain (γ1) and a eutectic structure of secondary austenite (γ2) and M7C3 carbide. The average size of a globular grain was determined to be 93.5 μm and the shape factor was 0.69. The globular grains showed a smooth boundaries. The Fe, C, and Cr elements showed obviously different contents in the solid and liquid phases. The Cr and C elements were enriched in the liquid phase, whereas the Fe content was higher in the solid phase. Compared with the traditional casting ingot, the remelting microstructure of the 9Cr18 semisolid billet prepared by the sloping plate method was more suitable for subsequent semisolid thixoforming. A more even distribution of the chemical composition and more globular grains can be obtained after semisolid remelting. The solid/liquid interface was smooth on the remelted specimen. The width of the M7C3 carbide decreased to 0.5 μm after remelting and the morphology became nearly granular. The observed microstructural evolution during remelting of the 9Cr18 semisolid billet contributes to our understanding of the thixotropic behavior in the subsequent semisolid forming process.

     

  • loading
  • [1]
    Flemings M C. Behavior of metal alloys in the semisolid state. Metall Trans A, 1991, 22(5): 957 doi: 10.1007/BF02661090
    [2]
    孟毅. 半固態成形工藝特點及發展現狀. 精密成形工程, 2016, 7(4):21 doi: 10.3969/j.issn.1674-6457.2016.04.004

    Meng Y. Features and development of semisolid metal forming technology. J Netshape Form Eng, 2016, 7(4): 21 doi: 10.3969/j.issn.1674-6457.2016.04.004
    [3]
    Balan T, Becker E, Langlois L, et al. A new route for semi-solid steel forging. CIRP Annals, 2017, 66(1): 297 doi: 10.1016/j.cirp.2017.04.111
    [4]
    Rogal L. Semi-solid processing of the CoCrCuFeNi high entropy alloy. Mater Des, 2017, 119: 406 doi: 10.1016/j.matdes.2017.01.082
    [5]
    Meng Y, Zhang J S, Yi Y S, et al. Study on the effects of forming conditions on microstructural evolution and forming behaviors of Cr?V?Mo tool steel during multi-stage thixoforging by physical simulation. J Mater Process Technol, 2017, 248: 275 doi: 10.1016/j.jmatprotec.2017.05.039
    [6]
    Rassili A. A review on thixoforming of high melting point alloys. Solid State Phenomena, 2016, 256: 228 doi: 10.4028/www.scientific.net/SSP.256.228
    [7]
    Jorstad J L. SSM provides important advantages; So, why has SSM failed to achieve greater market share? Solid State Phenomena, 2014, 217-218: 481 doi: 10.4028/www.scientific.net/SSP.217-218.481
    [8]
    Gu G C, Pesci P, Becker E, et al. In situ microstructure observation of steel grades in the Semi-Solid state for thixoforging process by using confoncal laser scanning microscopy. Solid State Phenomena, 2014, 217-218: 15 doi: 10.4028/www.scientific.net/SSP.217-218.15
    [9]
    Chen C P, Tsao C Y A. Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior. Acta Mater, 1997, 45(5): 1955
    [10]
    陳志國, 方亮, 吳吉文, 等. 半固態擠壓高硅鋁合金二次加熱的微觀組織演變. 材料導報, 2019, 33(6):1006 doi: 10.11896/cldb.201906017

    Chen Z G, Fang L, Wu J W, et al. Microstructure evolution of an extruded high silicon semi-solid state aluminum alloys during reheating. Mater Rev, 2019, 33(6): 1006 doi: 10.11896/cldb.201906017
    [11]
    Meng Y, Chen Q, Sugiyama S, et al. Effects of reheating and subsequent rapid cooling on microstructural evolution and semisolid forming behaviors of extruded Mg–8.20Gd–4.48Y–3.34Zn–0.36Zr alloy. J Mater Process Technol, 2017, 247: 192 doi: 10.1016/j.jmatprotec.2017.04.001
    [12]
    張繼淵, 李元東, 李明, 等. 2024合金二次凝固組織及行為研究//2017中國鑄造活動周論文集. 蘇州, 2017: 1

    Zhang J Y, Li Y D, Li M, et al. Microstructure characteristic and behavior of secondary solidification of 2024 alloy//Proceedings of 2017 China Foundry Activity. Suzhou, 2017: 1
    [13]
    Wang C L, Wu G H, Sun M, et al. Formation of non-dendritic microstructures in preparation of semi-solid Mg-RE alloys slurries: Roles of RE content and cooling rate. J Mater Process Technol, 2020, 279: 116545 doi: 10.1016/j.jmatprotec.2019.116545
    [14]
    Jiang J F, Xiao G F, Wang Y, et al. High temperature deformation behavior and microstructure evolution of wrought nickel-based superalloy GH4037 in solid and semi-solid states. Trans Nonferrous Met Soc China, 2020, 30(3): 710 doi: 10.1016/S1003-6326(20)65248-7
    [15]
    Wang Y J, Song R B, Li Y P. Microstructural evolution and mechanical properties of 9Cr18 steel after thixoforging and heat treatment. Mater Charact, 2017, 127: 64 doi: 10.1016/j.matchar.2017.02.009
    [16]
    Guan R G, Shen Y F, Zhao Z Y, et al. Nanoscale precipitates strengthened lanthanum-bearing Mg–3Sn–1Mn alloys through continuous rheo-rolling. Sci Rep, 2016, 6: 23154 doi: 10.1038/srep23154
    [17]
    劉志勇, 毛衛民, 王偉番, 等. 蛇形通道制備半固態A380鋁合金漿料組織的演變. 工程科學學報, 2016, 38(2):263

    Liu Z Y, Mao W M, Wang W P, et al. Microstructure evolution of the A380 aluminum alloy semi-solid slurry prepared by serpentine channel. Chin J Eng, 2016, 38(2): 263
    [18]
    Kirkwood D H, Suéry M, Kapranos P, et al. Semi-Solid Processing of Alloys//Springer Series in Materials Science. Springer-Verlag Berlin Heidelberg, 2010
    [19]
    王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固態觸變壓縮變形行為及組織演變. 金屬學報, 2018, 54(1):39 doi: 10.11900/0412.1961.2017.00209

    Wang Y J, Song R B, Song R F. Deformation behavior and microstructure evolution of 9Cr18 alloy during semi-solid compression. Acta Metall Sin, 2018, 54(1): 39 doi: 10.11900/0412.1961.2017.00209
    [20]
    Kolahdooz A, Dehkordi S A. Effects of important parameters in the production of Al-A356 alloy by semi-solid forming process. J Mater Res Technol, 2019, 8(1): 189 doi: 10.1016/j.jmrt.2017.11.005
    [21]
    Koeune R, Ponthot J P. A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. Int J Plast, 2014, 58: 120
    [22]
    Gu G C, Pesci R, Langlois L, et al. Microstructure investigation and flow behavior during thixoextrusion of M2 steel grade. J Mater Process Technol, 2015, 216: 178 doi: 10.1016/j.jmatprotec.2014.09.009
    [23]
    Kareh K M, O'Sullivan C, Nagira T, et al. Dilatancy in semi-solid steels at high solid fraction. Acta Mater, 2017, 125: 187 doi: 10.1016/j.actamat.2016.11.066
    [24]
    Jiang J F, Wang Y, Nie X, et al. Microstructure evolution of semisolid billet of nano-sized SiCp/7075 aluminum matrix composite during partial remelting process. Mater Des, 2016, 96: 36 doi: 10.1016/j.matdes.2016.02.021
    [25]
    Becker E, Bigot R, Langlois L, et al. Metallurgical and mechanical analysis from thixoforging steel shape. Int J Mater Form, 2008(Suppl 1): 977
    [26]
    邱集明, 肖寒, 王佳, 等. 半固態ZCuSn10銅合金二次加熱組織的演化. 材料研究學報, 2015, 29(4):277 doi: 10.11901/1005.3093.2014.542

    Qiu J M, Xiao H, Wang J, et al. Microstructure evolution of semi-solid ZCuSn10 copper alloy during reheating process. Chin J Mater Res, 2015, 29(4): 277 doi: 10.11901/1005.3093.2014.542
    [27]
    Roca A S, Fals H D C, Pedron J A, et al. Thixoformability of hypoeutectic gray cast iron. J Mater Process Technol, 2012, 212(6): 1225
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (1405) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频