<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
SU San-qing, LIU Xin-wei, WANG Wei, ZUO Fu-liang, DENG Rui-ze, QIN Yan-long. Progress and key problems in the research on metal magnetic memory testing technology[J]. Chinese Journal of Engineering, 2020, 42(12): 1557-1572. doi: 10.13374/j.issn2095-9389.2020.05.10.002
Citation: SU San-qing, LIU Xin-wei, WANG Wei, ZUO Fu-liang, DENG Rui-ze, QIN Yan-long. Progress and key problems in the research on metal magnetic memory testing technology[J]. Chinese Journal of Engineering, 2020, 42(12): 1557-1572. doi: 10.13374/j.issn2095-9389.2020.05.10.002

Progress and key problems in the research on metal magnetic memory testing technology

doi: 10.13374/j.issn2095-9389.2020.05.10.002
More Information
  • Corresponding author: E-mail:sussqx@xauat.edu.cn
  • Received Date: 2020-05-08
  • Publish Date: 2020-12-25
  • The nondestructive technique for testing ferromagnetic materials known as the metal magnetic memory method is formally proposed in 1997 by the Russian scholar Dubov at the 50th International Conference on Welding. The main advantage of this metal magnetic memory technology is that no external excitation magnetic field source is required. That is, by the excitation of the natural geomagnetic field, when a ferromagnetic member is subjected to external stress, a free magnetic leakage field is generated around the stress concentration or defect position of the ferromagnetic member due to the magnetic-force coupling effect. By measuring and analyzing the magnetic leakage signal on the surface of the material, the stress concentration, early damage, and degree of damage in the ferromagnetic member can be readily detected and evaluated to effectively prevent sudden brittle failure of the structure or member. This technique is the only effective nondestructive testing method for diagnosing early damage in ferromagnetic components. Because this metal magnetic memory testing technology can be used to assess the stress concentration, early damage position, and the degree of damage of ferromagnetic materials, it has great potential for use in predicting structural or component life and warning of damage. Its advantages include no manual magnetization or attached sensor, no surface treatment of components, and simple, convenient, and quick operation. As such, it has attracted wide interest from scholars around the world since its formal introduction. In this paper, based on the research on metal magnetic memory testing technology over the past 10 years, a theoretical model of the technology was established and the progress made in the theoretical research, experimental research, and engineering applications of this technology were summarized. The damage assessment criteria for magnetic memory testing technology were discussed and the factors that affect the magnetic memory detection signal were analyzed. Based on this review, the current problems were identified and future research directions of magnetic memory testing technology were proposed.

     

  • loading
  • [1]
    Zhang Y, Zheng K F, Heng J L, et al. Corrosion -fatigue evaluation of uncoated weathering steel bridges. Appl Sci, 2019, 9(17): 3461 doi: 10.3390/app9173461
    [2]
    李國強, 王彥博, 陳素文, 等. 高強度結構鋼研究現狀及其在抗震設防區應用問題. 建筑結構學報, 2013, 34(1):1

    Li G Q, Wang Y B, Chen S W, et al. State-of-the-art on research of high strength structural steels and key issues of using high strength steels in seismic structures. J Building Struct, 2013, 34(1): 1
    [3]
    Krivy V, Urban V, Kubzová M. Thickness of corrosion layers on typical surfaces of weathering steel bridges. Procedia Eng, 2016, 142: 56 doi: 10.1016/j.proeng.2016.02.013
    [4]
    李國強, 王衛永. 鋼結構抗火安全研究現狀與發展趨勢. 土木工程學報, 2017, 50(12):1

    Li G Q, Wang W Y. State-of-the-art and development trend of fire safety research on steel structures. China Civil Eng J, 2017, 50(12): 1
    [5]
    于潤橋, 徐長英, 龍盛蓉. 金屬磁記憶檢測在鉆具評價中的應用. 儀器儀表學報, 2008, 29(1):191 doi: 10.3321/j.issn:0254-3087.2008.01.035

    Yu R Q, Xu C Y, Long S R. Applications of metal magnetic memory in drillstring evaluation technique. Chin J Sci Instrum, 2008, 29(1): 191 doi: 10.3321/j.issn:0254-3087.2008.01.035
    [6]
    張鵬林, 許亞星, 桑遠, 等. 磁記憶技術在風電塔筒檢測中的應用. 無損檢測, 2014, 36(9):67

    Zhang P L, Xu Y X, Sang Y, et al. Application of magnetic memory technology in the wind tower detection. Nondestruct Test, 2014, 36(9): 67
    [7]
    Liao K X, Long L J, Zhang H X. Early inspection of weld seams on gas pipelines based on metal magnetic memory method. Open Petrol Eng J, 2016, 9: 1 doi: 10.2174/1874834101609010001
    [8]
    任吉林, 白鷺, 范振中, 等. 航空鐵磁材料磁記憶檢測新方法. 航空學報, 2009, 30(11):2224 doi: 10.3321/j.issn:1000-6893.2009.11.032

    Ren J L, Bai L, Fan Z Z, et al. New magnetic memory testing method of aeronautical ferromagnetic material. Acta Aeron Astron Sin, 2009, 30(11): 2224 doi: 10.3321/j.issn:1000-6893.2009.11.032
    [9]
    徐金龍, 徐凌云, 林海, 等. 金屬磁記憶診斷在石油套管檢測中的應用. 無損檢測, 2014, 36(8):38

    Xu J L, Xu L Y, Lin H, et al. Metal magnetic memory diagnostic applications in petroleum casing detection. Nondestruct Test, 2014, 36(8): 38
    [10]
    Yao K, Shen K, Wang Z D, et al. Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage. J Magn Magn Mater, 2014, 354: 112 doi: 10.1016/j.jmmm.2013.10.047
    [11]
    Shui G S, Li C W, Yao K. Non-destructive evaluation of the damage of ferromagnetic steel using metal magnetic memory and nonlinear ultrasonic method. Int J Appl Electromagn Mech, 2015, 47(4): 1023 doi: 10.3233/JAE-140115
    [12]
    王威, 樊浩, 楊為勝, 等. 鋼結構隱性損傷的磁記憶識別機理及試驗研究. 結構工程師, 2014, 30(5):139 doi: 10.3969/j.issn.1005-0159.2014.05.021

    Wang W, Fan H, Yang W S, et al. Identification mechanism and experiment of metal magnetic memory in steel structure implicit damage testing. Struct Eng, 2014, 30(5): 139 doi: 10.3969/j.issn.1005-0159.2014.05.021
    [13]
    Wang W, Yi S C, Su S Q. Experimental investigation of stress and damage characterization of steel beam bucking using magnetic memory signals. Struct Des Tall Spec Build, 2016, 25(11): 505 doi: 10.1002/tal.1269
    [14]
    Su S Q, Yi S C, Wang W, et al. Experimental study on the relationship between the strain and metal magnetic memory field of steel beams. Insight-Non-Destruct Test Condition Monitor, 2018, 60(7): 380 doi: 10.1784/insi.2018.60.7.380
    [15]
    Bulte D P, Langman R A. Origins of the magnetomechanical effect. J Magn Magn Mater, 2002, 251(2): 229 doi: 10.1016/S0304-8853(02)00588-7
    [16]
    李家偉, 陳積懋. 無損檢測手冊. 北京: 機械工業出版社, 2004

    Li J W, Chen J M. NDT Manual. Beijing: China Machine Press, 2004
    [17]
    Gilanyi A, Morishita K, Sukegawa T, et al. Magnetic nondestructive evaluation of fatigue damage of ferromagnetic steels for nuclear fusion energy systems. Fusion Eng Des, 1998, 42(1-4): 485 doi: 10.1016/S0920-3796(98)00180-X
    [18]
    Jiles D C. Review of magnetic methods for nondestructive evaluation. NDT Int, 1988, 21(5): 311
    [19]
    Wang Z D, Gu Y, Wang Y S. A review of three magnetic NDT technologies. J Magn Magn Mater, 2012, 324(4): 382 doi: 10.1016/j.jmmm.2011.08.048
    [20]
    游風荷, 戴蓉, 付三喬, 等. 金屬介質中磁場測量及誤差分析. 計量技術, 2000(8):13 doi: 10.3969/j.issn.1000-0771.2000.08.004

    You F H, Dai R, Fu S Q, et al. Measuring magnetic field in conductor and error analysis. Meas Tech, 2000(8): 13 doi: 10.3969/j.issn.1000-0771.2000.08.004
    [21]
    Dubov A A. A study of metal properties using the method of magnetic memory. Met Sci Heat Treat, 1997, 39(9): 401 doi: 10.1007/BF02469065
    [22]
    任吉林, 高春法, 宋凱, 等. 電站鐵磁構件的磁記憶檢測. 儀器儀表學報, 2003(5):470 doi: 10.3321/j.issn:0254-3087.2003.05.008

    Ren J L, Gao C F, Song K, et al. Application of magnetic memory testing on ferromagnetic items in power station. Chin J Sci Instrum, 2003(5): 470 doi: 10.3321/j.issn:0254-3087.2003.05.008
    [23]
    蘇三慶, 高志剛, 王威. 受拉鋼絲應力狀態的磁記憶信號峰峰值判別技術. 西安建筑科技大學學報: 自然科學版, 2018, 50(2):155

    Su S Q, Gao Z G, Wang W. Discrimination of stress stage about steel wire under tension based on peak-peak difference value of magnetic memory signals. J Xian Univ Architect Technol Nat Sci Ed, 2018, 50(2): 155
    [24]
    王威, 樊浩, 蘇三慶, 等. 鋼結構對接焊縫隱性損傷的磁記憶檢測試驗研究. 西安建筑科技大學學報: 自然科學版, 2014, 46(4):497

    Wang W, Fan H, Su S Q, et al. Experimental detection on implicit damage of butt weld of steel structure by magnetic memory testing. J Xian Univ Architect Technol Nat Sci Ed, 2014, 46(4): 497
    [25]
    樊浩, 王威, 蘇三慶, 等. 基于磁記憶的鋼結構應力表征技術. 材料科學與工程學報, 2014, 32(5):705

    Fan H, Wang W, Su S Q, et al. Steel stress characterization technique based on magnetic memory. J Mater Sci Eng, 2014, 32(5): 705
    [26]
    Bao S, Jin P F, Zhao Z Y, et al. A review of the metal magnetic memory method. J Nondestruct Eval, 2020, 39(1): 11 doi: 10.1007/s10921-020-0652-z
    [27]
    Jiles D C, Atherton D L. Theory of the magnetisation process in ferromagnets and it application to the magnetomechanical effect. J Phys D Appl Phys, 1984, 17(6): 1265 doi: 10.1088/0022-3727/17/6/023
    [28]
    Jiles D C. Theory of the magnetomechanical effect. J Phys D Appl Phys, 1995, 28(8): 1537 doi: 10.1088/0022-3727/28/8/001
    [29]
    Kuruzar M E, Callity B D. Magnetostriction of iron under tensile and compressive stress. Int J Magn, 1972, 1(4): 323
    [30]
    王社良, 王威, 蘇三慶, 等. 鐵磁材料相對磁導率變化與應力關系的磁力學模型. 西安科技大學學報, 2005, 25(3):288 doi: 10.3969/j.issn.1672-9315.2005.03.005

    Wang S L, Wang W, Su S Q, et al. A magneto-mechanical model on differential permeability and stress of ferromagnetic material. J Xian Univ Sci Technol, 2005, 25(3): 288 doi: 10.3969/j.issn.1672-9315.2005.03.005
    [31]
    李龍軍, 王曉鋒, 楊賓峰, 等. 鐵磁構件金屬磁記憶效應仿真與試驗. 無損檢測, 2012, 34(12):37

    Li L J, Wang X F, Yang B F, et al. Simulation and experimental study of the ferromagnetic metal magnetic memory effect. Nondestruct Test, 2012, 34(12): 37
    [32]
    李龍軍, 王曉鋒, 楊賓峰, 等. 基于力磁耦合的金屬磁記憶檢測機理與仿真. 空軍工程大學學報: 自然科學版, 2012, 13(3):85

    Li L J, Wang X F, Yang B F, et al. The basic theory and simulation research on metal magnetic memory based on stress-magnetization. J Air Force Eng Univ Nat Sci Ed, 2012, 13(3): 85
    [33]
    黃炳炎. 焊接裂紋磁記憶效應力磁耦合的數值模擬研究[學位論文]. 天津: 天津大學, 2007

    Huang B Y. Numerical Simulation Study of Coupling between Stress and Magnetism for Magnetic Memory Effect of the Welding Crack[Dissertation]. Tianjin: Tianjin University, 2007
    [34]
    胡磊, 丁紅勝, 潘禮慶. PD3型高鐵鋼軌力磁效應的有限元模擬. 無損檢測, 2014, 36(3):25

    Hu L, Ding H S, Pan L Q. Finite element simulation of stress-magnetization effect for high-speed rail PD3. Nondestruct Test, 2014, 36(3): 25
    [35]
    Cheng Y, Wang Y, Yu H, et al. Solenoid model for visualizing magnetic flux leakage testing of complex defects. NDT &E Int, 2018, 100: 166
    [36]
    Hwang J, Lord W. Finite element modeling of magnetic field/defect interactions. J Test Eval, 1975, 3(1): 21 doi: 10.1520/JTE10129J
    [37]
    徐章遂, 徐英, 王建斌, 等. 裂紋漏磁定量檢測原理與應用. 北京: 國防工業出版社, 2005

    Xu Z S, Xu Y, Wang J B, et al. Principle and Application of Quantitative Detection of Magnetic Leakage of Crack. Beijing: National Defense Industry Press, 2005
    [38]
    時朋朋. 缺陷漏磁場磁偶極子模型的若干解析解. 無損檢測, 2015, 37(3):1

    Shi P P. Analytical solutions of magnetic dipole model for defect leakage magnetic fields. Nondestruct Test, 2015, 37(3): 1
    [39]
    姚凱. 基于金屬磁記憶法的鐵磁材料早期損傷檢測與評價的實驗研究[學位論文]. 北京: 北京交通大學, 2014

    Yao K. Experimental Research on Testing and Evaluation of Early Damage of Ferromagnetic Materials Based on Metal Magnetic Memory Method[Dissertation]. Beijing: Beijing Jiaotong University, 2014
    [40]
    李思岐, 俞洋, 黨永斌, 等. 基于改進的支持向量回歸機算法的磁記憶定量化缺陷反演. 工程科學學報, 2018, 40(9):1123

    Li S Q, Yu Y, Dang Y B, et al. Metal magnetic memory quantitative inversion of defect based onoptimized support vector machine regression. Chin J Eng, 2018, 40(9): 1123
    [41]
    Wang Z D, Deng B, Yao K. Physical model of plastic deformation on magnetization in ferromagnetic materials. J Appl Phys, 2011, 109(8): 083928 doi: 10.1063/1.3574923
    [42]
    冷建成. 基于磁記憶技術的鐵磁性材料早期損傷診斷方法研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2012

    Leng J C. Research on Early Damage Diagnosis Method of Ferromagnetic Materials Based on Magnetic Memory Testing Technique[Dissertation]. Harbin: Harbin Institute of Technology, 2012
    [43]
    冷建成, 田洪旭, 郭亞光, 等. 拉壓不同應力對磁記憶信號的影響及機理. 工程科學學報, 2018, 40(5):565

    Leng J C, Tian H X, Guo Y G, et al. Effect of tensile and compressive stresses on magnetic memory signal and its mechanism. Chin J Eng, 2018, 40(5): 565
    [44]
    李建偉. 弱磁場下鐵磁材料磁機械效應的理論和實驗研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2012

    Li J W. Studies on the Magnetomechanical Theory and Experiment of Ferromagnetic Materials under Weak Magnetic Field[Dissertation]. Harbin: Harbin Institute of Technology, 2012
    [45]
    Xu M X, Xu M Q, Li J W, et al. Discuss on using Jiles-Atherton theory for charactering magnetic memory effect. J Appl Phys, 2012, 112(9): 093902 doi: 10.1063/1.4759315
    [46]
    Li J W, Xu M Q. Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress. J Appl Phys, 2011, 110(6): 063918 doi: 10.1063/1.3638711
    [47]
    Li J W, Xu M Q, Leng J C, et al. Modeling plastic deformation effect on magnetization in ferromagnetic materials. J Appl Phys, 2012, 111(6): 063909 doi: 10.1063/1.3695460
    [48]
    Shi P P, Zhang P C, Jin K, et al. Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials method. J Appl Phys, 2018, 123(14): 145102 doi: 10.1063/1.5022534
    [49]
    Shi P P, Jin K, Zheng X J. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field. J Appl Phys, 2016, 119(14): 145103 doi: 10.1063/1.4945766
    [50]
    Shi P P, Jin K, Zheng X J. A magnetomechanical model for the magnetic memory method. Int J Mech Sci, 2017, 124-125: 229 doi: 10.1016/j.ijmecsci.2017.03.001
    [51]
    Shi P P, Zheng X J. Magnetic charge model for 3D MMM signals. Nondestruct Test Eval, 2016, 31(1): 45 doi: 10.1080/10589759.2015.1064121
    [52]
    易術春, 王威, 蘇三慶, 等. 利用磁記憶信號特征參數表征拉伸應力狀態. 振動、測試與診斷, 2017, 37(4):667

    Yi S C, Wang W, Su S Q, et al. Characterization of tensile stress state by magnetic memory signal. J Vib Test Diagn, 2017, 37(4): 667
    [53]
    蘇三慶, 孫灝江, 王威, 等. 彎曲荷載作用下焊接鋼板件金屬磁記憶效應試驗研究. 西安建筑科技大學學報: 自然科學版, 2017, 49(6):771

    Su S Q, Sun H J, Wang W, et al. Experimental research on magnetic memory effect of butt welded steel plate under bending load. J Xian Univ Architect Technol Nat Sci Ed, 2017, 49(6): 771
    [54]
    王威, 易術春, 蘇三慶, 等. 建筑鋼試件拉伸應力與其磁記憶效應漏磁場梯度的對應關系研究. 西安建筑科技大學學報: 自然科學版, 2015, 47(3):341

    Wang W, Yi S C, Su S Q, et al. Research on the relationship between magnetic flux leakage gradient by metal magnetic memory effect and tensile stress of building steel specimen. J Xian Univ Architect Technol Nat Sci Ed, 2015, 47(3): 341
    [55]
    蘇三慶, 高波, 王威, 等. 建筑鋼板件力磁效應的ANSYS有限元模擬研究. 西安建筑科技大學學報: 自然科學版, 2016, 48(6):771

    Su S Q, Gao B, Wang W, et al. Research on ANSYS finite element simulation of stress-magnetization effect on tensile steel plate. J Xian Univ Architect Technol Nat Sci Ed, 2016, 48(6): 771
    [56]
    王威, 任廣超, 蘇三慶, 等. 鋼梁彎曲應變與磁記憶效應的關系研究. 西安建筑科技大學學報: 自然科學版, 2017, 49(1):29

    Wang W, Ren G C, Su S Q, et al. Research on the relationship between flexural strain and metal magnetic memory for steel beam. J Xian Univ Architect Technol Nat Sci Ed, 2017, 49(1): 29
    [57]
    王威, 任廣超, 蘇三慶, 等. 有缺陷鋼絲繩單絲受拉破壞的磁記憶信號變化全過程. 材料科學與工程學報, 2018, 36(1):66

    Wang W, Ren G C, Su S Q, et al. Experimental research on the fully change of magnetic memory signal under tension loading for single steel wire with defect. J Mater Sci Eng, 2018, 36(1): 66
    [58]
    蘇三慶, 馬小平, 王威, 等. 基于ANSYS有限元模擬的鋼絲繩單絲拉伸力-磁耦合研究. 西安建筑科技大學學報: 自然科學版, 2017, 49(3):309

    Su S Q, Ma X P, Wang W, et al. Research on magneto-mechanical coupling on tensile monofilament steel wire rope based on ANSYS finite element simulation. J Xian Univ Architect Technol Nat Sci Ed, 2017, 49(3): 309
    [59]
    Su S Q, Ma X P, Wang W, et al. Stress-dependent magnetic charge model for micro-defects of steel wire based on the magnetic memory method. Res Nondestruct Eval, 2020, 31(1): 24 doi: 10.1080/09349847.2019.1617914
    [60]
    范振中. 高速鐵路用鋼軌磁記憶檢測方法. 無損檢測, 2016, 38(4):22 doi: 10.11973/wsjc201604006

    Fan Z Z. Metal magnetic memory test method on rails for high speed railway. Nondestruct Test, 2016, 38(4): 22 doi: 10.11973/wsjc201604006
    [61]
    張軍, 朱晟楨, 畢貞法, 等. 基于金屬磁記憶效應的高鐵輪對早期故障檢測. 儀器儀表學報, 2018, 39(1):162

    Zhang J, Zhu S Z, Bi Z F, et al. Early fault detection in high-speed wheel set based on the magnetic memory effects. Chin J Sci Instrum, 2018, 39(1): 162
    [62]
    劉瑞, 張杰, 姚恩濤, 等. 金屬磁記憶檢測在鐵軌損傷中的應用研究 // 遠東無損檢測新技術論壇. 廈門, 2018: 57

    Liu R, Zhang J, Yao E T, et al. Application of metal magnetic memory testing in rail damage//Far East NDT New Technology Forum. Xiamen, 2018: 57
    [63]
    張連利. 壓力容器無損檢測技術綜述. 新材料與新技術, 2018, 44(2):83

    Zhang L L. A review of nondestructive testing technology for pressure vessels. New Mater New Technol, 2018, 44(2): 83
    [64]
    張俊斌. 壓力管道焊接裂紋金屬磁記憶檢測信號分析. 輕工科技, 2019, 35(3):97

    Zhang J B. Analysis on the detection signal of metal magnetic memory for cracking in pressure pipeline. Light Ind Sci Technol, 2019, 35(3): 97
    [65]
    Shen G T, Wu Y, Wang Y. Investigation on metal magnetic memory signal of surface crack on welding scar in LPC tank. Key Eng Mater, 2014, 270-273: 647
    [66]
    Liu Z L, Liu L T, Zhang J. Signal feature extraction and quantitative evaluation of metal magnetic memory testing for oil well casing based on data preprocessing technique. Abstract Appl Anal, 2014, 2014: 902304
    [67]
    Gong L H, Li Z X, Song Z Q. The quantitative prediction of pipeline cracks using magnetic memory based on a regression model. Open Mech Eng J, 2014, 8: 1 doi: 10.2174/1874155X01408010001
    [68]
    Dubov A A. Diagnostics of austenitic steel tubes in the superheaters of steam boilers using scattered magnetic fields. Therm Eng, 1999, 46(5): 369
    [69]
    Dubov A A. Experience with technical diagnostics of generator shroud rings at thermal plants. Therm Eng, 2009, 56(2): 120 doi: 10.1134/S0040601509020050
    [70]
    Roskose M, Rusin A, Kotowicz J. The metal magnetic memory method in the diagnostics of power machinery component. J Ach Mater Manuf Eng, 2010, 43(1): 362
    [71]
    郭鋼, 徐鋒. 磁記憶診斷技術在汽輪機葉片早期故障診斷上的應用. 煉油與化工, 2011, 22(1):30 doi: 10.3969/j.issn.1671-4962.2011.01.010

    Guo G, Xu F. Application of magnetic memory testing technology in early failure diagnosis of steam turbine vanes. Refin Chem Ind, 2011, 22(1): 30 doi: 10.3969/j.issn.1671-4962.2011.01.010
    [72]
    吳奭登, 鐘萬里. 金屬磁記憶檢測技術在監督在役火力發電機組中的應用. 無損檢測, 2010, 32(1):74

    Wu S D, Zhong W L. The application of metal magnetic memory testing on supervision of steam power generator unit in operation. Nondestruct Test, 2010, 32(1): 74
    [73]
    Yan T J, Zhang J D, Feng G D, et al. Early inspection of wet steam generator tubes based on magnetic memory method. Procedia Eng, 2011, 15: 1140 doi: 10.1016/j.proeng.2011.08.210
    [74]
    易方, 李著信, 蘇毅, 等. 基于改進型小波閾值的輸油管道磁記憶信號降噪方法. 石油學報, 2009, 30(1):141 doi: 10.3321/j.issn:0253-2697.2009.01.029

    Yi F, Li Z X, Su Y, et al. Denoising algorithm for metal magnetic memory signals of oil pipeline based on improved wavelet threshold. Acta Petrol Sin, 2009, 30(1): 141 doi: 10.3321/j.issn:0253-2697.2009.01.029
    [75]
    劉磊, 舒迪, 董炳義, 等. 金屬磁記憶技術在無縫鋼軌溫度應力檢測中的研究. 鐵道工程學報, 2010(11):56 doi: 10.3969/j.issn.1006-2106.2010.11.013

    Liu L, Shu D, Dong B Y, et al. Research on application of metal magnetic memory technology in testing temperature stress of seamless rail. J Railway Eng Soc, 2010(11): 56 doi: 10.3969/j.issn.1006-2106.2010.11.013
    [76]
    王朝霞, 宋金剛, 陳克, 等. CNG儲氣瓶的金屬磁記憶檢測. 無損檢測, 2007, 29(5):241 doi: 10.3969/j.issn.1000-6656.2007.05.002

    Wang Z X, Song J G, Chen K, et al. Metal magnetic memory testing on CNG gas cylinders. Nondestruct Test, 2007, 29(5): 241 doi: 10.3969/j.issn.1000-6656.2007.05.002
    [77]
    高廣興, 沈功田, 胡斌, 等. 在用起重機金屬磁記憶檢測的信號特征及驗證. 無損檢測, 2010, 32(5):317

    Gao G X, Shen G T, Hu B, et al. Metal magnetic memory testing signals characteristics and its verification of working crane. Nondestruct Test, 2010, 32(5): 317
    [78]
    張軍, 王彪. 磁記憶檢測套管的自適應信號去噪和故障分類. 電機與控制學報, 2007, 11(5):488 doi: 10.3969/j.issn.1007-449X.2007.05.011

    Zhang J, Wang B. Adaptive denoising and nonlinear fault class in metal magnetic memory tests borehole casing well. Electr Mach Control, 2007, 11(5): 488 doi: 10.3969/j.issn.1007-449X.2007.05.011
    [79]
    王歡, 陳厚桂, 康宜華, 等. 鋼絲繩疲勞的磁記憶檢測系統. 無損檢測, 2006, 28(2):78 doi: 10.3969/j.issn.1000-6656.2006.02.007

    Wang H, Chen H G, Kang Y H, et al. Magnetic memory testing system for fatigue of wire ropes. Nondestruct Test, 2006, 28(2): 78 doi: 10.3969/j.issn.1000-6656.2006.02.007
    [80]
    薛楠, 董麗虹, 徐濱士, 等. 曲軸再制造毛坯連桿軸頸表面損傷對剩余疲勞壽命的影響. 中國表面工程, 2012, 25(4):21 doi: 10.3969/j.issn.1007-9289.2012.04.003

    Xue N, Dong L H, Xu B S, et al. Influence of surface defect of crankpin for crankshaft remanufacturing core on remaining fatigue life. China Surf Eng, 2012, 25(4): 21 doi: 10.3969/j.issn.1007-9289.2012.04.003
    [81]
    高志剛. 鋼絲繩應力與損傷磁記憶信號量化關系研究[學位論文]. 西安: 西安科技大學, 2019

    Gao Z G. Research on the Quantitative Relation between Stress and Damage of Magnetic Memory Signal of Steel Wire Rope[Dissertation]. Xi’an: Xi'an University of Science and Technology, 2019
    [82]
    張靜, 周克印. 不同應力狀態下金屬磁記憶檢測信號特征. 合肥工業大學學報: 自然科學版, 2007, 30(3):381

    Zhang J, Zhou K Y. Analysis of the characteristics of the metal magnetic memory signal under different stress states. J Hefei Univ Technol Nat Sci, 2007, 30(3): 381
    [83]
    任吉林, 王東升, 宋凱. 典型鐵磁構件磁記憶效應的試驗研究. 無損檢測, 2005, 27(8):409 doi: 10.3969/j.issn.1000-6656.2005.08.007

    Ren J L, Wang D S, Song K. Experimental study on the magnetic memory effect of typical ferromagnetic items. Nondestruct Test, 2005, 27(8): 409 doi: 10.3969/j.issn.1000-6656.2005.08.007
    [84]
    戴光, 王文江, 李偉. 不同構件的磁記憶檢測及分析方法研究. 無損檢測, 2002, 24(6):262 doi: 10.3969/j.issn.1000-6656.2002.06.009

    Dai G, Wang W J, Li W. Magnetic memory testing and analysis of different structures. Nondestruct Test, 2002, 24(6): 262 doi: 10.3969/j.issn.1000-6656.2002.06.009
    [85]
    Dong L H, Xu B S, Dong S Y, et al. Study on magnetic memory signals of medium carbon steel specimens with surface crack precut during loading process. Rare Met, 2006, 25(6, Suppl 1): 431 doi: 10.1016/S1001-0521(07)60119-3
    [86]
    梁志芳, 李午申, 王迎娜, 等. 金屬磁記憶信號的零點特征. 天津大學學報, 2006, 39(7):847

    Liang Z F, Li W S, Wang Y N, et al. Zero value character of metal magnetic memory signal. J Tianjin Univ, 2006, 39(7): 847
    [87]
    尹大偉, 徐濱士, 董世運, 等. 不同檢測環境下磁記憶信號變化研究. 兵工學報, 2007, 28(3):319 doi: 10.3321/j.issn:1000-1093.2007.03.014

    Yin D W, Xu B S, Dong S Y, et al. Change of magnetic memory signals under different testing environments. Acta Armament, 2007, 28(3): 319 doi: 10.3321/j.issn:1000-1093.2007.03.014
    [88]
    陳星, 劉昌奎, 陶春虎, 等. 金屬材料拉伸損傷的磁記憶表征. 無損檢測, 2009, 31(5):345

    Chen X, Liu C K, Tao C H, et al. Research on metal magnetic memory signal change of a ferromagnetic material under static tension. Nondestruct Test, 2009, 31(5): 345
    [89]
    張軍, 王彪. 金屬磁記憶檢測中應力集中區信號的識別. 中國電機工程學報, 2008, 28(18):144 doi: 10.3321/j.issn:0258-8013.2008.18.025

    Zhang J, Wang B. Recognition of signals for stress concentration zone in metal magnetic memory tests. Proc CSEE, 2008, 28(18): 144 doi: 10.3321/j.issn:0258-8013.2008.18.025
    [90]
    陳海龍, 王長龍, 朱紅運. 基于磁梯度張量的金屬磁記憶檢測方法. 儀器儀表學報, 2016, 37(3):602 doi: 10.3969/j.issn.0254-3087.2016.03.017

    Chen H L, Wang C L, Zhu H Y. Metal magnetic memory test method based on magnetic gradient tensor. Chin J Sci Instrum, 2016, 37(3): 602 doi: 10.3969/j.issn.0254-3087.2016.03.017
    [91]
    Su S Q, Zhao X R, Wang W, et al. Metal magnetic memory inspection of Q345 steel specimens with butt weld in tensile and bending test. J Nondestruct Eval, 2019, 38(3): 64 doi: 10.1007/s10921-019-0603-8
    [92]
    張衛民, 袁俊杰, 王朝霞, 等. 螺紋連接承載過程的力?磁關系研究. 中國機械工程, 2009, 20(1):34 doi: 10.3321/j.issn:1004-132X.2009.01.008

    Zhang W M, Yuan J J, Wang Z X, et al. The force?magnetic relations in thread connecting process. China Mech Eng, 2009, 20(1): 34 doi: 10.3321/j.issn:1004-132X.2009.01.008
    [93]
    張衛民, 邱忠超, 袁俊杰, 等. 關于利用金屬磁記憶方法進行應力定量化評價問題的討論. 機械工程學報, 2015, 51(8):9 doi: 10.3901/JME.2015.08.009

    Zhang W M, Qiu Z C, Yuan J J, et al. Discussion on stress quantitative evaluation using metal magnetic memory method. J Mech Eng, 2015, 51(8): 9 doi: 10.3901/JME.2015.08.009
    [94]
    Dong L H, Xu B S, Dong S Y, et al. Stress dependence of the spontaneous stray field signals of ferromagnetic steel. NDT &E Int, 2009, 42(4): 323
    [95]
    王丹, 董世運, 徐濱士, 等. 靜載拉伸45鋼材料的金屬磁記憶信號分析. 材料工程, 2008(8):77 doi: 10.3969/j.issn.1001-4381.2008.08.019

    Wang D, Dong S Y, Xu B S, et al. Metal magnetic memory testing signals of 45 carbon steel during static tension process. J Mater Eng, 2008(8): 77 doi: 10.3969/j.issn.1001-4381.2008.08.019
    [96]
    Guo P J, Chen X D, Guo W H, et al. Effect of tensile stress on the variation of magnetic field of low-alloy steel. J Magn Magn Mater, 2011, 323(20): 2474 doi: 10.1016/j.jmmm.2011.05.015
    [97]
    Bao S, Lin L, Zhang D, et al. Characterization of stress-induced residual magnetic field in ferromagnetic steels // Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John’s, 2015: V004T03A029
    [98]
    Bao S, Hu S N, Lin L, et al. Experiment on the relationship between the magnetic field variation and tensile stress considering the loading history in U75V rail steel. Insight Non-Destruct Test Condition Monitor, 2015, 57(12): 683 doi: 10.1784/insi.2015.57.12.683
    [99]
    Bao S, Liu X, Zhang D. Variation of residual magnetic field of defective U75V steel subjected to tensile stress. Strain, 2015, 51(5): 370 doi: 10.1111/str.12147
    [100]
    Shi C L, Dong S Y, Xu B S, et al. Metal magnetic memory effect caused by static tension load in a case-hardened steel. J Magn Magn Mater, 2010, 322(4): 413 doi: 10.1016/j.jmmm.2009.09.066
    [101]
    Roskosz M, Gawrilenko P. Analysis of changes in residual magnetic field in loaded notched samples. NDT &E Int, 2008, 41(7): 570
    [102]
    Wilson J W, Tian G Y, Barrans S. Residual magnetic field sensing for stress measurement. Sens Actuators A, 2007, 135(2): 381 doi: 10.1016/j.sna.2006.08.010
    [103]
    Roskosz M, Bieniek M. Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements. NDT &E Int, 2012, 45(1): 55
    [104]
    Roskosz M, Rusin A, Bieniek M. Analysis of relationships between residual magnetic field and residual stress. Meccanica, 2013, 48(1): 45 doi: 10.1007/s11012-012-9582-x
    [105]
    Roskosz M, Bieniek M. Analysis of the universality of the residual stress evaluation method based on residual magnetic field measurements. NDT &E Int, 2013, 54: 63
    [106]
    胡先龍, 池永濱. 磁記憶診斷技術中應力集中水平定量評估方法. 華北電力技術, 2005(6):9 doi: 10.3969/j.issn.1003-9171.2005.06.003

    Hu X L, Chi Y B. Quantitative evaluation method of stress concentration in magnetic memory diagnosis Technique. North China Electr Power, 2005(6): 9 doi: 10.3969/j.issn.1003-9171.2005.06.003
    [107]
    Dong L H, Xu B S, Dong S Y, et al. Characterization of stress concentration of ferromagnetic materials by metal magnetic memory testing. Nondestruct Test Eval, 2010, 25(2): 145 doi: 10.1080/10589750902795366
    [108]
    Huang H H, Jiang S L, Yang C, et al. Stress concentration impaction the magnetic memory signal of ferromagnetic structural steel. Nondestruct Test Eval, 2014, 29(4): 377 doi: 10.1080/10589759.2014.949710
    [109]
    王威, 任英子, 蘇三慶, 等. 鋼箱梁豎向波紋腹板剪力與磁記憶場強關系的試驗研究. 西安建筑科技大學學報: 自然科學版, 2019, 51(3):327

    Wang W, Ren Y Z, Su S Q, et al. Experimental research on the relationship between shear force and magnetic memory field strength of vertical corrugated webs of steel box girder. J Xian Univ Architect Technol Nat Sci Ed, 2019, 51(3): 327
    [110]
    Bao S, Fu M L, Lou H J, et al. Evaluation of stress concentration of a low-carbon steel based on residual magnetic field measurements. Insight - Non-Destruct Test Condition Monitor, 2016, 58(12): 678 doi: 10.1784/insi.2016.58.12.678
    [111]
    Yao K, Deng B, Wang Z D. Numerical studies to signal characteristics with the metal magnetic memory-effect in plastically deformed samples. NDT &E Int, 2012, 47: 7
    [112]
    蘇三慶, 王威. 建筑鋼結構磁記憶無損檢測. 北京: 科學出版社, 2019

    Su S Q, Wang W. Non-Destructive Testing of Magnetic Memory in Steel Structure. Beijing: Science Press, 2019
    [113]
    邢海燕, 黨永斌, 王犇, 等. 基于K-近鄰隸屬度模糊支持向量機的再造抽油桿損傷等級磁記憶定量識別. 石油學報, 2015, 36(11):1427 doi: 10.7623/syxb201511012

    Xing H Y, Dang Y B, Wang B, et al. Quantitative MMM identification of damage levels based on KNN FSVM for remanufactured sucker rod. Acta Petrol Sin, 2015, 36(11): 1427 doi: 10.7623/syxb201511012
    [114]
    邢海燕, 孫曉軍, 王犇, 等. 基于模糊加權馬爾科夫鏈的焊縫隱性損傷磁記憶特征參數定量預測. 機械工程學報, 2017, 53(12):70 doi: 10.3901/JME.2017.12.070

    Xing H Y, Sun X J, Wang B, et al. Quantitative MMM characteristic parameter prediction for weld hidden damage status based on the fuzzy weighted Markov Chain. J Mech Eng, 2017, 53(12): 70 doi: 10.3901/JME.2017.12.070
    [115]
    邢海燕, 葛樺, 韓亞潼, 等. 基于熵帶與DS理論的焊縫等級磁記憶量化評價. 儀器儀表學報, 2016, 37(3):610 doi: 10.3969/j.issn.0254-3087.2016.03.018

    Xing H Y, Ge H, Han Y T, et al. Quantitative MMM evaluation of weld levels based on information entropy and DS evidence theory. Chin J Sci Instrum, 2016, 37(3): 610 doi: 10.3969/j.issn.0254-3087.2016.03.018
    [116]
    Li J W, Xu M Q, Leng J C, et al. The characteristics of the magnetic memory signals under different states for Q235 defect samples. Adv Mater Res, 2010, 97-101: 500 doi: 10.4028/www.scientific.net/AMR.97-101.500
    [117]
    Li J W, Xu M Q, Xu M X, et al. Investigation of the variation in magnetic field induced by cyclic tensile-compressive stress. Insight- Non-Destruct Test Condition Monitor, 2011, 53(9): 487 doi: 10.1784/insi.2011.53.9.487
    [118]
    邢海燕, 樊久銘, 王日新, 等. 早期損傷臨界應力狀態磁記憶檢測技術. 哈爾濱工業大學學報, 2009, 41(5):26 doi: 10.3321/j.issn:0367-6234.2009.05.006

    Xing H Y, Fan J M, wang R X, et al. Critical stress state evaluation for early damage with metal magnetic memory method. J Harbin Inst Technol, 2009, 41(5): 26 doi: 10.3321/j.issn:0367-6234.2009.05.006
    [119]
    Jian X L, Jian X C, Deng G Y. Experiment on relationship between the magnetic gradient of low-carbon steel and its stress. J Magn Magn Mater, 2009, 321(21): 3600 doi: 10.1016/j.jmmm.2009.06.077
    [120]
    任吉林, 王東升, 宋凱, 等. 應力狀態對磁記憶信號的影響. 航空學報, 2007, 28(3):724 doi: 10.3321/j.issn:1000-6893.2007.03.040

    Ren J L, Wang D S, Song K, et al. Influence of stress state on magnetic memory signal. Acta Aeron Astron Sin, 2007, 28(3): 724 doi: 10.3321/j.issn:1000-6893.2007.03.040
    [121]
    于鳳云, 張川緒, 吳淼. 檢測方向和提離值對磁記憶檢測信號的影響. 機械設計與制造, 2006(5):118 doi: 10.3969/j.issn.1001-3997.2006.05.055

    Yu F Y, Zhang C X, Wu M. The study of the effect of placement direction and lift-off on the magnetic memory testing signals. Mach Des Manuf, 2006(5): 118 doi: 10.3969/j.issn.1001-3997.2006.05.055
    [122]
    梁志芳, 李午申, 王迎娜, 等. 金屬磁記憶法檢測焊接裂紋的時間空間有效性. 焊接學報, 2006, 27(8):9 doi: 10.3321/j.issn:0253-360X.2006.08.003

    Liang Z F, Li W S, Wang Y N, et al. Available time and dubious zone size of welding crack by metal magnetic memory method. Trans China Weld Inst, 2006, 27(8): 9 doi: 10.3321/j.issn:0253-360X.2006.08.003
    [123]
    于鳳云. 拉應力引起的磁記憶特性及其與檢測時間的關系. 黑龍江科技學院學報, 2007, 17(2):126

    Yu F Y. Connection between magnetic memory characteristics induced by tensile stress and its testing time. J Heilongjiang Inst Sci Technol, 2007, 17(2): 126
    [124]
    董麗虹, 徐濱士, 董世運, 等. 鐵磁材料制造工藝對金屬磁記憶信號的影響. 中國表面工程, 2010, 23(4):82 doi: 10.3969/j.issn.1007-9289.2010.04.019

    Dong L H, Xu B S, Dong S Y, et al. Influence of manufacturing process on metal magnetic memory signals in ferromagnetic materials. China Surf Eng, 2010, 23(4): 82 doi: 10.3969/j.issn.1007-9289.2010.04.019
    [125]
    Leng J C, Xu M Q, Zhou G Q, et al. Effect of initial remnant states on the variation of magnetic memory signals. NDT &E Int, 2012, 52: 23
    [126]
    Hu B, Li L M, Chen X, et al. Study on the influencing factors of magnetic memory method. Int J Appl Electromagn Mech, 2010, 33(3-4): 1351 doi: 10.3233/JAE-2010-1260
    [127]
    Huang H H, Qian Z C. Effect of temperature and stress on residual magnetic signals in ferromagnetic structural steel. IEEE Trans Magn, 2017, 53(1): 1
    [128]
    劉琳, 陳偉民, 章鵬, 等. 磁記憶拉伸應力測量中外磁場干擾的影響. 儀器儀表學報, 2012, 33(10):2194 doi: 10.3969/j.issn.0254-3087.2012.10.006

    Liu L, Chen W M, Zhang P, et al. Effects of external magnetic field interference on tensile stress measurement with magnetic memory technology. Chin J Sci Instrum, 2012, 33(10): 2194 doi: 10.3969/j.issn.0254-3087.2012.10.006
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (2689) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频