<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHAO Jia-liang, LUO Xu-dong, CHEN Jun-hong, XIE Zhi-peng. Progress in the application of nanotechnology to magnesia refractories[J]. Chinese Journal of Engineering, 2021, 43(1): 76-84. doi: 10.13374/j.issn2095-9389.2020.05.09.001
Citation: ZHAO Jia-liang, LUO Xu-dong, CHEN Jun-hong, XIE Zhi-peng. Progress in the application of nanotechnology to magnesia refractories[J]. Chinese Journal of Engineering, 2021, 43(1): 76-84. doi: 10.13374/j.issn2095-9389.2020.05.09.001

Progress in the application of nanotechnology to magnesia refractories

doi: 10.13374/j.issn2095-9389.2020.05.09.001
More Information
  • Magnesia refractories are promising high-temperature structural materials known for their high melting point, excellent high-temperature stability, and promising mechanical properties, which make them suitable for numerous high-temperature applications in steel manufacturing, metallurgy, building materials, and ceramics. However, traditional magnesia refractories do not meet the requirements established for advanced refractories. Low-carbon magnesia carbon refractories have several disadvantages, including poor slag and thermal shock resistances, owing to their reduced carbon content. Magnesia calcia refractories have poor hydration resistance due to the presence of free calcium oxide. Moreover, magnesia alumina refractories have poor sintering and mechanical properties owing to their volumes and thermal expansion mismatch. Therefore, the techniques used to prepare high-performance magnesia refractories have attracted widespread attention. Recently, nanotechnology has emerged as a promising new technology that is widely used improve refractory yield and in many other applications because of its excellent surface properties, small size, quantum dimensions, and macro quantum effects. The preparation of magnesia composite refractories using nanotechnology relieves the demand for high-performance magnesia refractories by high-temperature industries and also contributes to the development of lightweight and functional value-added products. Therefore, the use of nanotechnology in the preparation of magnesia composite refractories has great significance for the enhancement of their properties. In this paper, the research status and progress of nanotechnology in recent years with respect to the damage mechanisms in low-carbon magnesia–carbon refractories, magnesia calcia refractories, and magnesia alumina refractories in China and overseas were reviewed. In addition, the interaction mechanisms were analyzed, the challenges and developments in the application of nanotechnology were discussed.

     

  • loading
  • [1]
    Norhasri M S M, Hamidah M S, Fadzil A M. Applications of using nano material in concrete: a review. Constr Build Mater, 2017, 133:91
    [2]
    Dai Y J, Li Y W, Xu X F, et al. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test. J Eur Ceram Soc, 2019, 39(16): 5433 doi: 10.1016/j.jeurceramsoc.2019.07.026
    [3]
    王恩會, 陳俊紅, 侯新梅. 功能化新型耐火材料的設計、制備及應用. 工程科學學報, 2019, 41(12):1520

    Wang E H, Chen J H, Hou X M. Design, preparation, and application of new function refractories. Chin J Eng, 2019, 41(12): 1520
    [4]
    Dai Y J, Li Y W, Jin S L, et al. Mechanical and fracture investigation of magnesia refractories with acoustic emission-based method. J Eur Ceram Soc, 2020, 40(1): 181 doi: 10.1016/j.jeurceramsoc.2019.09.010
    [5]
    Roy J, Chandra S, Maitra S. Nanotechnology in castable refractory. Ceram Int, 2019, 45(1): 19 doi: 10.1016/j.ceramint.2018.09.261
    [6]
    姚華柏, 姚蘇哲, 駱昶, 等. 鎂碳磚的研究現狀與發展趨勢. 工程科學學報, 2018, 40(3):253

    Yao H B, Yao S Z, Luo C, et al. Current research and developing trend of MgO–C bricks. Chin J Eng, 2018, 40(3): 253
    [7]
    Bag M, Adak S, Sarkar R. Study on low carbon containing MgO–C refractory: use of nano carbon. Ceram Int, 2012, 38(3): 2339 doi: 10.1016/j.ceramint.2011.10.086
    [8]
    Luz A P, Souza T M, Pagliosa C, et al. In situ hot elastic modulus evolution of MgO–C refractories containing Al, Si or Al–Mg antioxidants. Ceram Int, 2016, 42(8): 9836 doi: 10.1016/j.ceramint.2016.03.080
    [9]
    Xiao J L, Chen J F, Wei Y W, et al. Oxidation behaviors of MgO–C refractories with different Si/SiC ratio in the 1100–1500 ℃ range. Ceram Int, 2019, 45(17): 21099 doi: 10.1016/j.ceramint.2019.07.086
    [10]
    Bag M, Adak S, Sarkar R. Nano carbon containing MgO–C refractory: effect of graphite content. Ceram Int, 2012, 38(6): 4909 doi: 10.1016/j.ceramint.2012.02.082
    [11]
    Ding D H, Chong X C, Xiao G Q, et al. Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO–C refractories. Ceram Int, 2019, 45(13): 16433 doi: 10.1016/j.ceramint.2019.05.174
    [12]
    Zhu T B, Li Y W, Sang S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO–C refractories. Ceram Int, 2014, 40(3): 4333 doi: 10.1016/j.ceramint.2013.08.101
    [13]
    王軍凱. 碳納米管/碳化硅原位催化制備、機理及其在MgO–C耐火材料中的應用[學位論文]. 武漢: 武漢科技大學, 2018

    Wang J K. In-situ Catalytic Preparation Mechanism of Carbon Nanotube/SiC and Their Application in MgO –C Refractory[Dissertation]. Wuhan: Wuhan University of Science and Technology, 2018
    [14]
    Rastegar H, Bavand-vandchali M, Nemati A, et al. Phase and microstructural evolution of low carbon MgO–C refractories with addition of Fe-catalyzed phenolic resin. Ceram Int, 2019, 45(3): 3390 doi: 10.1016/j.ceramint.2018.10.253
    [15]
    Liu Z Y, Yuan L, Yu J K. Improvements in the mechanical properties and oxidation resistance of MgO–C refractories with the addition of nano-Y2O3 powder. Adv Appl Ceram, 2019, 118(5): 249 doi: 10.1080/17436753.2018.1564414
    [16]
    Ding D H, Lv L H, Xiao G Q, et al. Improved properties of low-carbon MgO–C refractories with the addition of multilayer graphene/MgAl2O4 composite powders. Int J Appl Ceram Technol, 2020, 17(2): 645 doi: 10.1111/ijac.13347
    [17]
    Zhu T B, Li Y W, Sang S B, et al. Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO–C pellets. Mater Des, 2017, 124: 16 doi: 10.1016/j.matdes.2017.03.054
    [18]
    Wei G P, Zhu B Q, Li X C, et al. Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheet-modified phenol resin. Ceram Int, 2015, 41(1): 1553 doi: 10.1016/j.ceramint.2014.09.091
    [19]
    Yeprem H A. Effect of iron oxide addition on the hydration resistance and bulk density of doloma. J Eur Ceram Soc, 2007, 27(2-3): 1651 doi: 10.1016/j.jeurceramsoc.2006.05.010
    [20]
    Ghosh A, Tripathi H S. Sintering behaviour and hydration resistance of reactive dolomite. Ceram Int, 2012, 38(2): 1315 doi: 10.1016/j.ceramint.2011.09.005
    [21]
    Lee J K, Choi H S, Lee S J. Effect of Fe2O3 additions on the hydration resistance of CaO. J Ceram Process Res, 2012, 13(5): 646
    [22]
    Shahraki A, Ghasemi-Kahrizsangi S, Nemati A. Performance improvement of MgO–CaO refractories by the addition of nano-sized Al2O3. Mater Chem Phys, 2017, 198: 354 doi: 10.1016/j.matchemphys.2017.06.026
    [23]
    Dehsheish H G, Karamian E, Owsalou R G, et al. Improvement in performance of MgO–CaO refractory composites by addition of Iron (III) oxide nanoparticles. Ceram Int, 2018, 44(13): 15880 doi: 10.1016/j.ceramint.2018.06.003
    [24]
    Ghasemi-Kahrizsangi S, Sedeh M B, Dehsheikh H G, et al. Densification and properties of ZrO2 nanoparticles added magnesia–doloma refractories. Ceram Int, 2016, 42(14): 15658 doi: 10.1016/j.ceramint.2016.07.021
    [25]
    Ghasemi-Kahrizsangi S, Dehsheikh H G, Karamian E, et al. Effect of MgAl2O4 nanoparticles addition on the densification and properties of MgO–CaO refractories. Ceram Int, 2017, 43(6): 5014 doi: 10.1016/j.ceramint.2017.01.011
    [26]
    Mao H H, Selleby M, Sundman B. A re-evaluation of the liquid phases in the CaO–Al2O3 and MgO–Al2O3 systems. Calphad, 2004, 28(3): 307 doi: 10.1016/j.calphad.2004.09.001
    [27]
    Beketov I V, Medvedev A I, Samatov O M, et al. Synthesis and luminescent properties of MgAl2O4:Eu nanopowders. J Alloys Compd, 2014, 586(Suppl 1): S472
    [28]
    Yang L, Meng Q, Lu N, et al. Combustion synthesis and spark plasma sintering of MgAl2O4-graphene composites. Ceram Int, 2019, 45(6): 7635 doi: 10.1016/j.ceramint.2019.01.060
    [29]
    Tong S H, Zhao J Z, Zhang Y C, et al. Corrosion mechanism of Al–MgO–MgAl2O4 refractories in RH refining furnace during production of rail steel. Ceram Int, 2020, 46(8): 10089 doi: 10.1016/j.ceramint.2019.12.277
    [30]
    Hashimoto S, Honda S, Hiramatsu T, et al. Fabrication of porous spinel (MgAl2O4) from porous alumina using a template method. Ceram Int, 2013, 39(2): 2077 doi: 10.1016/j.ceramint.2012.08.062
    [31]
    Aksel C, Rand B, Riley F L, et al. Thermal shock behaviour of magnesia–spinel composites. J Eur Ceram Soc, 2004, 24(9): 2839 doi: 10.1016/j.jeurceramsoc.2003.07.017
    [32]
    Gu Q, Zhao F, Liu X H, et al. Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates. Ceram Int, 2019, 45(9): 12093 doi: 10.1016/j.ceramint.2019.03.107
    [33]
    Sako E Y, Braulio M A L, Pandolfelli V C. How effective is the addition of nanoscaled particles to alumina–magnesia refractory castables? Ceram Int, 2012, 38(6): 5157 doi: 10.1016/j.ceramint.2012.03.021
    [34]
    Aksel C, Warren P D, Riley F L. Fracture behaviour of magnesia and magnesia–spinel composites before and after thermal shock. J Eur Ceram Soc, 2004, 24(8): 2407 doi: 10.1016/j.jeurceramsoc.2003.07.005
    [35]
    Shafiee H, Salehirad A, Samimi A. Effect of synthesis method on structural and physical properties of MgO/MgAl2O4 nanocomposite as a refractory ceramic. Appl Phys A, 2020, 126(3): 198 doi: 10.1007/s00339-020-3369-z
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)

    Article views (6725) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频