<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
ZHAO Zhong-yu, ZHAO Jun-xue, TAN Ze-xin, QU Bo-qiao, CUI Ya-ru. Viscosity detection and the estimation model of fluorine-containing mold flux for continuous casting[J]. Chinese Journal of Engineering, 2021, 43(4): 529-536. doi: 10.13374/j.issn2095-9389.2020.05.03.002
Citation: ZHAO Zhong-yu, ZHAO Jun-xue, TAN Ze-xin, QU Bo-qiao, CUI Ya-ru. Viscosity detection and the estimation model of fluorine-containing mold flux for continuous casting[J]. Chinese Journal of Engineering, 2021, 43(4): 529-536. doi: 10.13374/j.issn2095-9389.2020.05.03.002

Viscosity detection and the estimation model of fluorine-containing mold flux for continuous casting

doi: 10.13374/j.issn2095-9389.2020.05.03.002
More Information
  • Mold flux plays a significant role in the continuous casting of steel. Especially, the viscosity (or its inverse, fluidity) of mold flux is a key parameter for industrial applications to aid in product quality. In this paper, viscosities of different types of fluorine-containing continuous casting mold fluxes were first measured by the rotating cylinder method, and then a new viscosity estimation model was established based on the Arrhenius equation combined with nonlinear regression analysis to analyze the influence of component changes on the viscosity. Combining model calculation and experimental measurement, an iso-viscosity diagram of the CaF2–Na2O–Al2O3–CaO–SiO2–MgO slag system was also created. It is found that deviation within 10% is calculated using the model in this study compared with the traditional viscosity estimation models of different types of fluorine-containing continuous casting mold fluxes but gradually increases when the w(CaF2) of slag exceeds 20%, mainly due to the change of slag composition caused by fluoride volatilization. Finally, the measured value cannot correspond to the composition of the initial slag, and the model cannot give an accurate estimated value. It is also found that an increase of CaF2 can significantly reduce viscosity, whereas, the effect of Al2O3 and Na2O on viscosity is restricted by CaF2 content. When w(CaF2) > 17%, the viscosity of slag decreases with increasing w(Al2O3), and when w(CaF2) < 17%, the viscosity of slag increases significantly with increasing w(Al2O3). When w(CaF2) > 11.5%, the viscosity of the slag system decreases significantly with increasing w(Na2O) mass. When w(CaF2) < 11.5%, the effect of Na2O on viscosity is not obvious. In addition, the diagram shows that the mass fraction of CaF2 in the low viscosity area is nearly 14%. This shows that the viscosity and fluidity of mold flux can be improved by adjusting the component ratio in this iso-viscosity diagram for applications in the steel industry.

     

  • loading
  • [1]
    王新華. 鋼鐵冶金: 煉鋼學. 北京: 高等教育出版社, 2007

    Wang X H. Metallurgy of Iron and Steel: Steelmaking. Beijing: Higher Education Press, 2007
    [2]
    Anisimov K N, Longinov A M, Toptygin A M, et al. Investigation of the mold powder film structure and its influence on the developed surface in continuous casting. Steel Transl, 2016, 46(7): 489 doi: 10.3103/S0967091216070032
    [3]
    Viswanathan N N, Fatemeh S, Du S C, et al. Estimation of escape rate of volatile components SiF4 and HF from slags containing CaF2 during viscosity measurement. Steel Res, 1999, 70(2): 53 doi: 10.1002/srin.199905600
    [4]
    Cho J W, Yoo S, Park M S, et al. Improvement of castability and surface quality of continuously cast TWIP slabs by molten mold flux feeding technology. Metall Mater Trans B, 2017, 48(1): 187 doi: 10.1007/s11663-016-0818-3
    [5]
    Susa M, Sakamaki T, Kojima R. Chemical states of fluorine in CaF2?CaO?SiO2 and NaF?Na2O?SiO2 glassy slags from the perspective of electronic polarisability. Ironmaking Steelmaking, 2005, 32(1): 13 doi: 10.1179/174328105X15841
    [6]
    趙俊學, 趙忠宇, 尚南, 等. 連鑄保護渣中氟化物作用及影響分析. 鋼鐵, 2018, 53(10):8

    Zhao J X, Zhao Z Y, Shang N, et al. Analysis on influence of fluoride in mold powder of continuous casting. Iron Steel, 2018, 53(10): 8
    [7]
    Li J Y, Zhang L, Tan Y, et al. Research of boron removal from polysilicon using CaO–Al2O3–SiO2–CaF2 slags. Vacuum, 2014, 103: 33 doi: 10.1016/j.vacuum.2013.12.002
    [8]
    王謙, 何生平, 李玉剛, 等. 中國連鑄保護渣技術現狀及發展需求. 連鑄, 2014(5):1

    Wang Q, He S P, Li Y G, et al. Status and developing needs of mould fluxes for continuous casting in China. Continuous Cast, 2014(5): 1
    [9]
    Arefpour A R, Monshi A, Saidi A, et al. Effect of CaF2 and MnO on mold powder viscosity and solidification during high-speed continuous casting. Refract Ind Ceram, 2013, 54(3): 203 doi: 10.1007/s11148-013-9575-x
    [10]
    Persson M, Seetharaman S, Seetharaman S. Kinetic studies of fluoride evaporation from slags. ISIJ Int, 2007, 47(12): 1711 doi: 10.2355/isijinternational.47.1711
    [11]
    Haverkamp R G. An XPS study of the fluorination of carbon anodes in molten NaF–AlF3–CaF2. J Mater Sci, 2012, 47(3): 1262 doi: 10.1007/s10853-011-5772-5
    [12]
    Shi C B, Cho J W, Zheng D L, et al. Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2016, 23(6): 627 doi: 10.1007/s12613-016-1275-3
    [13]
    Park H S, Kim H, Sohn I. Influence of CaF2 and Li2O on the viscous behavior of calcium silicate melts containing 12 wt pct Na2O. Metall Mater Trans B, 2011, 42(2): 324 doi: 10.1007/s11663-011-9474-9
    [14]
    Tong Z F, Qiao J L, Jiang X Y. Kinetics of Na2O evaporation from CaO?Al2O3?SiO2?MgO?TiO2?Na2O slags. Ironmaking Steelmaking, 2017, 44(4): 237 doi: 10.1080/03019233.2016.1210354
    [15]
    Park J Y, Ryu J W, Sohn I. In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B, 2014, 45(4): 1186 doi: 10.1007/s11663-014-0087-y
    [16]
    Shin S H, Cho J W, Kim S H. Structural investigations of CaO–CaF2–SiO2–Si3N4 based glasses by Raman spectroscopy and XPS considering its application to continuous casting of steels. Mater Des, 2015, 76: 1 doi: 10.1016/j.matdes.2015.03.035
    [17]
    Guo J M, Peng K W, Yi L, et al. Study on properties of Al2O3?CaO?SiO2?CaF2?MgO slag system. Appl Mech Mater, 2014, 513-517: 24 doi: 10.4028/www.scientific.net/AMM.513-517.24
    [18]
    趙俊學, 葛蓓蕾, 崔雅茹, 等. 含易揮發組元爐渣的高溫性能檢測. 工業加熱, 2016, 45(2):12

    Zhao J X, Ge B L, Cui Y R, et al. High temperature properties measurement of slag with higher volatile content. Ind Heat, 2016, 45(2): 12
    [19]
    韓秀麗, 李沛. 堿度值R、F-含量和Na2O含量對中碳鋼保護渣渣膜結晶體的影響規律. 河北聯合大學學報(自然科學版), 2014, 36(1):18

    Han X L, Li P. Effect of alkalinity, F’s content and Na2O content in steel slag film crystals. J Hebei United Univ Nat Sci Ed, 2014, 36(1): 18
    [20]
    趙顯久, 溫宏權, 張捷宇. 連鑄結晶器保護渣物相性能研究. 現代冶金, 2019, 47(3):46

    Zhao X J, Wen H Q, Zhang J Y. The phase properties of mold flux in continuous casting mold flux. Mod Metall, 2019, 47(3): 46
    [21]
    Riboud P V, Roux Y, Lucas L D, et al. Improvement of continuous casting powders. Fachber Hiittenprax Metallweiterverarb, 1981(19): 859
    [22]
    Iida T, Sakai H, Kita Y, et al. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int, 2000, 40(Suppl): S110 doi: 10.2355/isijinternational.40.Suppl_S110
    [23]
    Mills K C, Fox A B, Li Z, et al. Performance and properties of mould fluxes. Ironmaking Steelmaking, 2005, 32(1): 26 doi: 10.1179/174328105X15788
    [24]
    劉振學, 王力. 實驗設計與數據處理. 2版. 北京: 化學工業出版社, 2015

    Liu Z X, Wang L. Experimental Design and Data Processing. 2nd Ed. Beijing: Chemical Industry Press, 2015
    [25]
    Mills K C, Sridhar S. Viscosities of ironmaking and steelmaking slags. Ironmaking Steelmaking, 1999, 26(4): 262 doi: 10.1179/030192399677121
    [26]
    潘志勝, 王謙, 何生平, 等. 連鑄保護渣組分對黏度的影響. 特鋼技術, 2010, 16(2):18

    Pan Z S, Wang Q, He S P, et al. Effect of viscosity components on mould fluxes. Spec Steel Technol, 2010, 16(2): 18
    [27]
    Mills K C, Fox A B. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (1447) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频