Citation: | ZHAO Zhong-yu, ZHAO Jun-xue, TAN Ze-xin, QU Bo-qiao, CUI Ya-ru. Viscosity detection and the estimation model of fluorine-containing mold flux for continuous casting[J]. Chinese Journal of Engineering, 2021, 43(4): 529-536. doi: 10.13374/j.issn2095-9389.2020.05.03.002 |
[1] |
王新華. 鋼鐵冶金: 煉鋼學. 北京: 高等教育出版社, 2007
Wang X H. Metallurgy of Iron and Steel: Steelmaking. Beijing: Higher Education Press, 2007
|
[2] |
Anisimov K N, Longinov A M, Toptygin A M, et al. Investigation of the mold powder film structure and its influence on the developed surface in continuous casting. Steel Transl, 2016, 46(7): 489 doi: 10.3103/S0967091216070032
|
[3] |
Viswanathan N N, Fatemeh S, Du S C, et al. Estimation of escape rate of volatile components SiF4 and HF from slags containing CaF2 during viscosity measurement. Steel Res, 1999, 70(2): 53 doi: 10.1002/srin.199905600
|
[4] |
Cho J W, Yoo S, Park M S, et al. Improvement of castability and surface quality of continuously cast TWIP slabs by molten mold flux feeding technology. Metall Mater Trans B, 2017, 48(1): 187 doi: 10.1007/s11663-016-0818-3
|
[5] |
Susa M, Sakamaki T, Kojima R. Chemical states of fluorine in CaF2?CaO?SiO2 and NaF?Na2O?SiO2 glassy slags from the perspective of electronic polarisability. Ironmaking Steelmaking, 2005, 32(1): 13 doi: 10.1179/174328105X15841
|
[6] |
趙俊學, 趙忠宇, 尚南, 等. 連鑄保護渣中氟化物作用及影響分析. 鋼鐵, 2018, 53(10):8
Zhao J X, Zhao Z Y, Shang N, et al. Analysis on influence of fluoride in mold powder of continuous casting. Iron Steel, 2018, 53(10): 8
|
[7] |
Li J Y, Zhang L, Tan Y, et al. Research of boron removal from polysilicon using CaO–Al2O3–SiO2–CaF2 slags. Vacuum, 2014, 103: 33 doi: 10.1016/j.vacuum.2013.12.002
|
[8] |
王謙, 何生平, 李玉剛, 等. 中國連鑄保護渣技術現狀及發展需求. 連鑄, 2014(5):1
Wang Q, He S P, Li Y G, et al. Status and developing needs of mould fluxes for continuous casting in China. Continuous Cast, 2014(5): 1
|
[9] |
Arefpour A R, Monshi A, Saidi A, et al. Effect of CaF2 and MnO on mold powder viscosity and solidification during high-speed continuous casting. Refract Ind Ceram, 2013, 54(3): 203 doi: 10.1007/s11148-013-9575-x
|
[10] |
Persson M, Seetharaman S, Seetharaman S. Kinetic studies of fluoride evaporation from slags. ISIJ Int, 2007, 47(12): 1711 doi: 10.2355/isijinternational.47.1711
|
[11] |
Haverkamp R G. An XPS study of the fluorination of carbon anodes in molten NaF–AlF3–CaF2. J Mater Sci, 2012, 47(3): 1262 doi: 10.1007/s10853-011-5772-5
|
[12] |
Shi C B, Cho J W, Zheng D L, et al. Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2016, 23(6): 627 doi: 10.1007/s12613-016-1275-3
|
[13] |
Park H S, Kim H, Sohn I. Influence of CaF2 and Li2O on the viscous behavior of calcium silicate melts containing 12 wt pct Na2O. Metall Mater Trans B, 2011, 42(2): 324 doi: 10.1007/s11663-011-9474-9
|
[14] |
Tong Z F, Qiao J L, Jiang X Y. Kinetics of Na2O evaporation from CaO?Al2O3?SiO2?MgO?TiO2?Na2O slags. Ironmaking Steelmaking, 2017, 44(4): 237 doi: 10.1080/03019233.2016.1210354
|
[15] |
Park J Y, Ryu J W, Sohn I. In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B, 2014, 45(4): 1186 doi: 10.1007/s11663-014-0087-y
|
[16] |
Shin S H, Cho J W, Kim S H. Structural investigations of CaO–CaF2–SiO2–Si3N4 based glasses by Raman spectroscopy and XPS considering its application to continuous casting of steels. Mater Des, 2015, 76: 1 doi: 10.1016/j.matdes.2015.03.035
|
[17] |
Guo J M, Peng K W, Yi L, et al. Study on properties of Al2O3?CaO?SiO2?CaF2?MgO slag system. Appl Mech Mater, 2014, 513-517: 24 doi: 10.4028/www.scientific.net/AMM.513-517.24
|
[18] |
趙俊學, 葛蓓蕾, 崔雅茹, 等. 含易揮發組元爐渣的高溫性能檢測. 工業加熱, 2016, 45(2):12
Zhao J X, Ge B L, Cui Y R, et al. High temperature properties measurement of slag with higher volatile content. Ind Heat, 2016, 45(2): 12
|
[19] |
韓秀麗, 李沛. 堿度值R、F-含量和Na2O含量對中碳鋼保護渣渣膜結晶體的影響規律. 河北聯合大學學報(自然科學版), 2014, 36(1):18
Han X L, Li P. Effect of alkalinity, F’s content and Na2O content in steel slag film crystals. J Hebei United Univ Nat Sci Ed, 2014, 36(1): 18
|
[20] |
趙顯久, 溫宏權, 張捷宇. 連鑄結晶器保護渣物相性能研究. 現代冶金, 2019, 47(3):46
Zhao X J, Wen H Q, Zhang J Y. The phase properties of mold flux in continuous casting mold flux. Mod Metall, 2019, 47(3): 46
|
[21] |
Riboud P V, Roux Y, Lucas L D, et al. Improvement of continuous casting powders. Fachber Hiittenprax Metallweiterverarb, 1981(19): 859
|
[22] |
Iida T, Sakai H, Kita Y, et al. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int, 2000, 40(Suppl): S110 doi: 10.2355/isijinternational.40.Suppl_S110
|
[23] |
Mills K C, Fox A B, Li Z, et al. Performance and properties of mould fluxes. Ironmaking Steelmaking, 2005, 32(1): 26 doi: 10.1179/174328105X15788
|
[24] |
劉振學, 王力. 實驗設計與數據處理. 2版. 北京: 化學工業出版社, 2015
Liu Z X, Wang L. Experimental Design and Data Processing. 2nd Ed. Beijing: Chemical Industry Press, 2015
|
[25] |
Mills K C, Sridhar S. Viscosities of ironmaking and steelmaking slags. Ironmaking Steelmaking, 1999, 26(4): 262 doi: 10.1179/030192399677121
|
[26] |
潘志勝, 王謙, 何生平, 等. 連鑄保護渣組分對黏度的影響. 特鋼技術, 2010, 16(2):18
Pan Z S, Wang Q, He S P, et al. Effect of viscosity components on mould fluxes. Spec Steel Technol, 2010, 16(2): 18
|
[27] |
Mills K C, Fox A B. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
|