Citation: | XU Zheng, ZHANG Gong, WANG Huo-ming, HOU Zhi-cheng, YANG Wen-lin, LIANG Ji-min, WANG Jian, GU Xing. Error compensation of collaborative robot dynamics based on deep recurrent neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 995-1002. doi: 10.13374/j.issn2095-9389.2020.04.30.003 |
[1] |
An C H, Atkeson C G, Hollerbach J. Model-Based Control of a Robot Manipulator. Cambridge: MIT Press, 1988
|
[2] |
Xiang W W K, Yan S Z. Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification. Acta Astron, 2020, 169: 158 doi: 10.1016/j.actaastro.2020.01.011
|
[3] |
Norouzzadeh S, Lorenz T, Hirche S. Towards safe physical human-robot interaction: An online optimal control scheme // The 21st IEEE International Symposium on Robot and Human Interactive Communication. Paris, 2012: 503
|
[4] |
Craig J J. Introduction to Robotics: Mechanics and Control. 4th Ed. Pearson, 2017
|
[5] |
Siciliano B, Sciavicco L, Villani L, et al. Robotics: Modelling, Planning and Control. London: Springer, 2015
|
[6] |
陶岳, 趙飛, 曹巨江. 協作機器人關節摩擦特性辨識與補償技術. 組合機床與自動化加工技術, 2019(4):28
Tao Y, Zhao F, Cao J J. Research on friction characteristics identification and compensation of cooperative robot's joints. Modular Mach Tool Autom Manuf Tech, 2019(4): 28
|
[7] |
Simoni L, Beschi M, Legnani G, et al. On the inclusion of temperature in the friction model of industrial robots. IFAC-PapersOnLine, 2017, 50(1): 3482 doi: 10.1016/j.ifacol.2017.08.933
|
[8] |
Ossadnik D, Guadarrama-Olvera J R, Dean-Leon E, et al. Adaptive friction compensation for humanoid robots without joint-torque sensors // IEEE-RAS International Conference on Humanoid Robots (Humanoids). Beijing, 2018: 980
|
[9] |
張鐵, 洪景東, 李秋奮, 等. 基于BP神經網絡的機器人波動摩擦力矩修正方法. 工程科學學報, 2019, 41(8):1085
Zhang T, Hong J D, Li Q F, et al. Wave friction correction method for a robot based on BP neural network. Chin J Eng, 2019, 41(8): 1085
|
[10] |
Vitiello V, Tornambe A. Adaptive compensation of modeled friction using a RBF neural network approximation // 46th IEEE Conference on Decision and Control. New Orleans, 2007: 4699
|
[11] |
Qiu L K, Zhao Y Z, Zhang Y X. Adaptive friction identification and compensation based on RBF neural network for the linear inverted pendulum // Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Harbin, 2011: 385
|
[12] |
Yu W, Heredia J A. PD control of robot with RBF networks compensation // Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. Como, 2000: 329
|
[13] |
孫昌國, 馬香峰, 譚吉林. 機器人操作器慣性參數的計算. 機器人, 1990, 12(2):19
Sun C G, Ma X F, Tan J L. Calculation of inertia parameter of robot manipulator. Robot, 1990, 12(2): 19
|
[14] |
Armstrong B, Khatib O, Burdick J. The explicit dynamic model and inertial parameters of the PUMA 560 arm // Proceedings of 1986 IEEE International Conference on Robotics and Automation. San Francisco, 1986: 510
|
[15] |
Olsen M, Petersen H G. A new method for estimating parameters of a dynamic robot model. IEEE Trans Rob Autom, 2001, 17(1): 95 doi: 10.1109/70.917088
|
[16] |
Khalil W, Guegan S. Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans Rob, 2004, 20(4): 754 doi: 10.1109/TRO.2004.829473
|
[17] |
Swevers J, Naumer B, Pieters S, et al. An experimental robot load identification method for industrial application // Experimental Robotics VIII. Springer, Berlin, Heidelberg, 2003: 318
|
[18] |
丁亞東, 陳柏, 吳洪濤, 等. 一種工業機器人動力學參數的辨識方法. 華南理工大學學報(自然科學版), 2015, 43(3):49
Ding Y D, Chen B, Wu H T, et al. An identification method of industrial robot’s dynamic parameters. J South China Univ Technol Nat Sci Ed, 2015, 43(3): 49
|
[19] |
Khalil W, Restrepo P. An efficient algorithm for the calculation of the filtered dynamic model of robots // Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis, 1996: 323
|
[20] |
劉正士, 陳恩偉, 干方建. 機器人慣性參數辨識的若干方法及進展. 合肥工業大學學報(自然科學版), 2005, 28(9):998
Liu Z S, Chen E W, Gan F J. Review of some methods for identifying inertial parameters of robots and their development. J Hefei Univ Technol Nat Sci, 2005, 28(9): 998
|
[21] |
Yoshida K, Khalil W. Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters. Int J Rob Res, 2000, 19(5): 498 doi: 10.1177/02783640022066996
|
[22] |
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans Evol Comput, 2014, 18(4): 577 doi: 10.1109/TEVC.2013.2281535
|
[23] |
Graves A. Long Short-Term Memory. Berlin: Springer, 2012: 1735
|
[24] |
Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures // Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lile, France, 2015: 2342
|
[25] |
Kingma D, Ba J. Adam: A method for stochastic optimization //International Conference for Learning Representations. San Diego, 2015: 1
|