<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
LIU Xiao-feng, SUN Wei, SUN Yue. Semianalytical modeling of a bolted thin plate structure based on nonuniform distributions of the complex modulus of a virtual material[J]. Chinese Journal of Engineering, 2021, 43(6): 843-851. doi: 10.13374/j.issn2095-9389.2020.04.20.005
Citation: LIU Xiao-feng, SUN Wei, SUN Yue. Semianalytical modeling of a bolted thin plate structure based on nonuniform distributions of the complex modulus of a virtual material[J]. Chinese Journal of Engineering, 2021, 43(6): 843-851. doi: 10.13374/j.issn2095-9389.2020.04.20.005

Semianalytical modeling of a bolted thin plate structure based on nonuniform distributions of the complex modulus of a virtual material

doi: 10.13374/j.issn2095-9389.2020.04.20.005
More Information
  • The simulation of bolt joints affects the analysis accuracy of the dynamic characteristics of the whole structure in the dynamic modeling of bolted connection structures. In this study, the mechanical properties of the bolted thin-plate lap joint were simulated based on a nonuniformly distributed virtual material. The parameters of the virtual material were expressed based on a complex modulus, and the complex stiffness matrix can be directly generated to express the stiffness and damping characteristics of the lap joint. The steps used to generate a joint damping matrix in conventional modeling were omitted, and the modeling process was simplified to ensure model accuracy. We established a semianalytical model of a bolted thin plate structure to enable its dynamic analysis. In this study, we first described the modeling concept. The virtual material was assumed to have three types of nonuniform complex modulus distributions to simulate the mechanical properties of the bolted lap joint. We proposed a method for determining the storage modulus and energy dissipation modulus of the virtual material using a reverse identification technique. Based on the energy method and the assumed modes of orthogonal polynomials, we derived a semianalytical model of bolted thin plates and develop an innovative formula for solving the frequency response function at any hammering point and the vibration point of the semianalytical model. Finally, we conducted a case study on a bolted thin plate structure. Results show that the deviation between the simulated natural frequencies calculated using the semianalytical model and the experimental natural frequencies are less than 5%. Further, the calculated model shapes and frequency-response-function curves are close to those obtained based on the measured values. These results prove that a virtual material with a nonuniform complex modulus distribution can effectively simplify the modeling of a bolted joint and achieve high simulation accuracy.

     

  • loading
  • [1]
    Reid J D, Hiser N R. Detailed modeling of bolted joints with slippage. Finite Elem Anal Des, 2005, 41(6): 547 doi: 10.1016/j.finel.2004.10.001
    [2]
    Sawa S, Ishimura M, Sekiguchi Y, et al. 3-D FEM stress analysis and mechanical characteristics in bolted joints under external tensile loadings//ASME 2015 International Mechanical Engineering Congress and Exposition. Houston, 2015: IMECE2015-50572, V02BT02A036
    [3]
    Luyt P C B, Theron N J, Pietra F. Non-linear finite element modelling and analysis of the effect of gasket creep-relaxation on circular bolted flange connections. Int J Press Vessels Pip, 2017, 150: 52 doi: 10.1016/j.ijpvp.2016.12.001
    [4]
    Zhang D C, Wang G, Huang F H, et al. Load-transferring mechanism and calculation theory along engaged threads of high-strength bolts under axial tension. J Constr Steel Res, 2020, 172: 106153 doi: 10.1016/j.jcsr.2020.106153
    [5]
    Luan Y, Guan Z Q, Cheng G D, et al. A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints. J Sound Vib, 2012, 331(2): 325 doi: 10.1016/j.jsv.2011.09.002
    [6]
    Meisami F, Moavenian M, Afsharfard A. Nonlinear behavior of single bolted flange joints: A novel analytical model. Eng Struct, 2018, 173: 908 doi: 10.1016/j.engstruct.2018.07.035
    [7]
    Xiang J W, Zhao S W, Li D C, et al. An improved spring method for calculating the load distribution in multi-bolt composite joints. Composites Part B, 2017, 117: 1 doi: 10.1016/j.compositesb.2017.02.024
    [8]
    Deaner B J, Allen M S, Starr M J, et al. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures. J Vib Acoust, 2015, 137(2): 021012 doi: 10.1115/1.4029074
    [9]
    李玲, 蔡安江, 阮曉光, 等. 栓接結合部剛度建模與特性分析. 振動工程學報, 2017, 30(1):1

    Li L, Cai A J, Ruan X G, et al. Stiffness modeling and characteristic analysis of bolted joints. J Vib Eng, 2017, 30(1): 1
    [10]
    孫偉, 李星占, 韓清凱. 螺栓聯接梁結構結合部非線性特性參數辨識. 振動工程學報, 2013, 26(2):185 doi: 10.3969/j.issn.1004-4523.2013.02.005

    Sun W, Li X Z, Han Q K. Nonlinear joint parameter identification for bolted beam structure. J Vib Eng, 2013, 26(2): 185 doi: 10.3969/j.issn.1004-4523.2013.02.005
    [11]
    Iranzad M, Ahmadian H. Identification of nonlinear bolted lap joint models. Comput Struct, 2012, 96-97: 1 doi: 10.1016/j.compstruc.2012.01.011
    [12]
    Wang D, Fan X H. Nonlinear dynamic modeling for joint interfaces by combining equivalent linear mechanics with multi-objective optimization. Acta Mech Solida Sin, 2020, 33(4): 564 doi: 10.1007/s10338-019-00156-w
    [13]
    Zha Y J, Zhang J F, Yu D W, et al. Modeling method for bolted joint interfaces based on transversely isotropic virtual materials//2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Auckland, 2018: 1118
    [14]
    Yang Y, Cheng H, Liang B, et al. A novel virtual material layer model for predicting natural frequencies of composite bolted joints. Chin J Aeron, https://doi.org/10.1016/j.cja.2020.05.028
    [15]
    Shi K, Zhang G P. A parameterized model of fixed joint interface based on virtual material. J Mech Sci Technol, 2019, 33(11): 5209 doi: 10.1007/s12206-019-1010-x
    [16]
    Ye H, Huang Y M, Li P Y, et al. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces. Tribol Int, 2016, 95: 109 doi: 10.1016/j.triboint.2015.11.013
    [17]
    Zhao Y S, Yang C, Cai L G, et al. Surface contact stress-based nonlinear virtual material method for dynamic analysis of bolted joint of machine tool. Precis Eng, 2016, 43: 230 doi: 10.1016/j.precisioneng.2015.08.002
    [18]
    Shi Y M, Sol H, Hua H X. Material parameter identification of sandwich beams by an inverse method. J Sound Vib, 2006, 290(3-5): 1234 doi: 10.1016/j.jsv.2005.05.026
    [19]
    高曄, 孫偉, 樸玉華, 等. 基于實測頻響函數反推管路卡箍支承剛度與阻尼. 航空動力學報, 2019, 34(3):664

    Gao Y, Sun W, Piao Y H, et al. Inverse identification of support stiffness and damping of hoop based on measured FRF. J Aerospace Power, 2019, 34(3): 664
    [20]
    Miller B, Ziemiański L. Optimization of dynamic behavior of thin-walled laminated cylindrical shells by genetic algorithms and deep neural networks supported by modal shape identification. Adv Eng Software, 2020, 147: 102830 doi: 10.1016/j.advengsoft.2020.102830
    [21]
    Chisari C, Bedon C, Amadio C. Dynamic and static identification of base-isolated bridges using genetic algorithms. Eng Struct, 2015, 102: 80 doi: 10.1016/j.engstruct.2015.07.043
    [22]
    劉倩, 楊建平, 王柏琳, 等. 基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型. 工程科學學報, 2020, 42(5):645

    Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking-continuous casting production scheduling based on the “furnace-caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645
    [23]
    Papkov S O, Banerjee J R. Dynamic stiffness formulation and free vibration analysis of specially orthotropic Mindlin plates with arbitrary boundary conditions. J Sound Vib, 2019, 458: 522 doi: 10.1016/j.jsv.2019.06.028
    [24]
    Xue J, Wang Y F, Chen L H. Nonlinear vibration of cracked rectangular Mindlin plate with in-plane preload. J Sound Vib, 2020, 481: 115437 doi: 10.1016/j.jsv.2020.115437
    [25]
    Mahi A, Bedia E A A, Tounsi A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl Math Modell, 2015, 39(9): 2489 doi: 10.1016/j.apm.2014.10.045
    [26]
    Sun W, Wang Z, Yan X F, et al. Inverse identification of the frequency-dependent mechanical parameters of viscoelastic materials based on the measured FRFs. Mech Syst Signal Process, 2018, 98: 816 doi: 10.1016/j.ymssp.2017.05.031
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article views (1162) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频