<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
CUI Huai-yun, MEI Peng-cheng, LIU Zhi-yong, LU Lin. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well[J]. Chinese Journal of Engineering, 2020, 42(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2020.04.13.004
Citation: CUI Huai-yun, MEI Peng-cheng, LIU Zhi-yong, LU Lin. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well[J]. Chinese Journal of Engineering, 2020, 42(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2020.04.13.004

Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well

doi: 10.13374/j.issn2095-9389.2020.04.13.004
More Information
  • Corresponding author: E-mail: lulin315@126.com
  • Received Date: 2020-04-13
  • Publish Date: 2020-09-20
  • CO2-enhanced oil recovery (CO2-EOR) technology is the process of capturing CO2, transporting the captured CO2 to a storage site, and injecting the captured CO2 into an oil field to enhance oil recovery. CO2-EOR technology can greatly increase the profitability of oil fields. It is also a promising method for reducing CO2 emission and improving the environment. For these reasons, this technology has become increasingly important for the development of the global oil industry and has been widely explored. However, CO2 injection significantly increases the risk of corrosion failure of tubing steel. As such, the effect of CO2 on the stress corrosion behavior of tubing steel should be investigated. In this study, the effect of CO2 partial pressure ($P_{{\rm{CO}}_2} $) on the stress corrosion behavior of N80 steel was examined using an immersion test, a surface analysis technique, and an electrochemical technology. Results reveal that the influence of $P_{{\rm{CO}}_2} $ on the corrosion rate has an inflection point of approximately 1 MPa. When $P_{{\rm{CO}}_2} $ is <1 MPa, a corrosion product film (FeCO3) forms slowly, and the coverage rate is low. As $P_{{\rm{CO}}_2} $ increases, the corrosion current density of N80 steel increases. When $P_{{\rm{CO}}_2} $ is >1 MPa, the corrosion product film can form at a faster rate, and the corrosion current density of N80 steel decreases as $P_{{\rm{CO}}_2} $ increases. The pH of the solution decreases continuously when CO2 is dissolved in solution. Consequently, the stress corrosion cracking (SCC) of N80 tubing steel occurs in an annulus environment. The SCC mechanism of N80 steel in the annulus environment of CO2 injection wells is the combination of anodic dissolution (AD) and hydrogen embrittlement (HE). Localized AD (pitting) is dominant in SCC at the initiation stage, and SCC is most likely initiated at $P_{{\rm{CO}}_2} $ of 1 MPa. At the crack growth stage, HE has a stronger effect on SCC than AD, the SCC easily grows with a high $P_{{\rm{CO}}_2} $, and SCC sensitivity further improves.

     

  • loading
  • [1]
    Mohsenzadeh A, Escrochi M, Afraz M V, et al. Non-hydrocarbon gas injection followed by steam–gas co-injection for heavy oil recovery enhancement from fractured carbonate reservoirs. <italic>J Petrol Sci Eng</italic>, 2016, 144: 121 doi: 10.1016/j.petrol.2016.03.003
    [2]
    Wang S H. Multiphysical Simulation of CO2 Enhanced Oil Recovery in Unconventional Reservoirs: from Fundamental Physics to Simulator Development[Dissertation]. Colorado: Colorado School of Mines, 2019
    [3]
    李明杰. CO2體系中緩蝕劑對碳鋼緩蝕機理和協同效應的研究[學位論文]. 北京: 北京化工大學, 2017

    Li M J. Study of the Corrosion Inhibition Mechanism and Synergistic Effect of Inhibitor on Carbon Steel in CO2 System[Dissertation]. Beijing: Beijing University of Chemical Technology, 2017
    [4]
    趙毅, 許艷艷, 朱原原, 等. 油氣集輸管道內防腐技術應用進展. 裝備環境工程, 2018, 15(6):53

    Zhao Y, Xu Y Y, Zhu Y Y, et al. Research status on internal corrosion protection technology of oil & gas transportation pipeline. <italic>Equip Environ Eng</italic>, 2018, 15(6): 53
    [5]
    張晨. CO2/H2S腐蝕體系中緩蝕劑的緩蝕機理及協同效應研究[學位論文]. 北京: 北京化工大學, 2018

    Zhang C. Study of the Corrosion Inhibition Mechanism and the Synergistic Corrosion Inhibition Effect of Inhibitors CO2/H2S System[Dissertation]. Beijing: Beijing University of Chemical Technology, 2018
    [6]
    Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H<sub>2</sub>S/CO<sub>2</sub> annular environment. <italic>J Mater Eng Perform</italic>, 2014, 23(4): 1279 doi: 10.1007/s11665-013-0855-x
    [7]
    Monnot M, Nogueira R P, Roche V, et al. Sulfide stress corrosion study of a super martensitic stainless steel in H<sub>2</sub>S sour environments: Metallic sulfides formation and hydrogen embrittlement. <italic>Appl Surf Sci</italic>, 2017, 394: 132 doi: 10.1016/j.apsusc.2016.10.072
    [8]
    劉然克, 王立賢, 劉智勇, 等. 咪唑啉類緩蝕劑對P110鋼在CO<sub>2</sub>注入井環空環境中應力腐蝕行為的影響. 表面技術, 2015, 44(3):25

    Liu R K, Wang L X, Liu Z Y, et al. Effect of imidazoline corrosion inhibitor on stress corrosion cracking behavior of P110 steel in simulated annulus environment in CO<sub>2</sub> injection wells. <italic>Surf Technol</italic>, 2015, 44(3): 25
    [9]
    劉然克, 尹國軍, 韋春艷, 等. 環空環境下P110油管鋼的電化學腐蝕行為. 腐蝕科學與防護技術, 2013, 25(6):451

    Liu R K, Yin G J, Wei C Y, et al. Electrochemical corrosion behavior of P110 tubing steel in annular environment. <italic>Corros Sci Prot Technol</italic>, 2013, 25(6): 451
    [10]
    Bao M Y, Ren C Q, Lei M Y, et al. Electrochemical behavior of tensile stressed P110 steel in CO<sub>2</sub> environment. <italic>Corros Sci</italic>, 2016, 112: 585 doi: 10.1016/j.corsci.2016.08.021
    [11]
    Sun C, Li J K, Shuang S, et al. Effect of defect on corrosion behavior of electroless Ni?P coating in CO<sub>2</sub>-saturated NaCl solution. <italic>Corros Sci</italic>, 2018, 134: 23 doi: 10.1016/j.corsci.2018.01.041
    [12]
    Sun C, Liu S B, Li J K, et al. Insights into the interfacial process in electroless Ni?P coating on supercritical CO<sub>2</sub> transport pipeline as relevant to carbon capture and storage. <italic>ACS Appl Mater Interfaces</italic>, 2019, 11(17): 16243 doi: 10.1021/acsami.9b03623
    [13]
    Zhu M, Du C W, Li X G, et al. Effect of AC current density on stress corrosion cracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution. <italic>Electrochim Acta</italic>, 2014, 117: 351 doi: 10.1016/j.electacta.2013.11.149
    [14]
    Lei X W, Feng Y R, Fu A Q, et al. Investigation of stress corrosion cracking behavior of super 13Cr tubing by full-scale tubular goods corrosion test system. <italic>Eng Fail Anal</italic>, 2015, 50: 62 doi: 10.1016/j.engfailanal.2015.02.001
    [15]
    Liu Z Y, Lu L, Huang Y Z, et al. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water. <italic>Corrosion</italic>, 2014, 70(7): 678 doi: 10.5006/1153
    [16]
    Liu Z Y, Li X G, Zhang Y R, et al. Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution. <italic>Acta Metall Sin </italic>(<italic>Engl Lett</italic>)<italic></italic>, 2009, 22(1): 58 doi: 10.1016/S1006-7191(08)60071-X
    [17]
    Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment. <italic>Corros Sci</italic>, 2009, 51(4): 895 doi: 10.1016/j.corsci.2009.01.007
    [18]
    Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment. <italic>Corros Sci</italic>, 2008, 50(8): 2251 doi: 10.1016/j.corsci.2008.05.011
    [19]
    Parkins R N, Zhou S. The stress corrosion cracking of C?Mn steel in CO<sub>2</sub>?<inline-formula> <tex-math id="M50-1"> $ {\rm{HCO}}_3^ - - {\rm{CO}}_3^{2 - } $ \normalsize </tex-math></inline-formula> solutions. I: stress corrosion data. <italic>Corros Sci</italic>, 1997, 39(1): 159 doi: 10.1016/S0010-938X(96)00116-3
    [20]
    Park J J, Pyun S I, Na K H, et al. Effect of passivity of the oxide film on low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution. <italic>Corrosion</italic>, 2002, 58(4): 329 doi: 10.5006/1.3287682
    [21]
    ASTM. ASTM G170 Standard Guide for Evaluating and Qualifying Oilfield and Refinery Corrosion Inhibitors in the Laboratory. ASTM International, 2012
    [22]
    鋼鐵研究總院, 上海材料研究所. GB/T 15970.2—2000 金屬和合金的腐蝕應力腐蝕試驗?第2部分: 彎梁試樣的制備和應用. 北京: 中國標準出版社, 2000

    Central Iron & Steel Research Institute, Shanghai Research Institute of Materials. GB/T 15970.2—2000 Corrosion of Metals and Alloys-Stress Corrosion Testing Part 2: Preparation and Use of Bent-Beam Specimens. Beijing: Standards Press of China, 2000
    [23]
    Askari M, Aliofkhazraei M, Ghaffari S, et al. Film former corrosion inhibitors for oil and gas pipelines?a technical review. <italic>J Nat Gas Sci Eng</italic>, 2018, 58: 92 doi: 10.1016/j.jngse.2018.07.025
    [24]
    Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO<sub>2</sub> condition. <italic>Corros Sci</italic>, 2017, 120: 107 doi: 10.1016/j.corsci.2017.02.012
    [25]
    張博. 模擬深海環境10CrSiNiCu鋼腐蝕及氫損傷行為研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2014

    Zhang B. The Corrosion and Hydrogen Damage Behaviour of 10CrSiNiCu Steel in the Simulated Deep Sea Environment[Dissertation]. Harbin: Harbin Engineering University, 2014
    [26]
    余軍, 張德平, 潘若生, 等. 井下含硫環空液中P110油管鋼應力腐蝕開裂的電化學噪聲特征. 金屬學報, 2018, 54(10):1399

    Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid. <italic>Acta Metall Sin</italic>, 2018, 54(10): 1399
    [27]
    李建平, 趙國仙, 王玉, 等. 塔里木油田用油套管鋼的靜態腐蝕研究. 中國腐蝕與防護學報, 2004, 24(4):230

    Li J P, Zhao G X, Wang Y, et al. Static corrosion of oil thimble used in tarim oil field. <italic>J Chin Soc Corros Prot</italic>, 2004, 24(4): 230
    [28]
    余軍. P110油管鋼在模擬環空液中的應力腐蝕開裂機理與監測方法研究[學位論文]. 武漢: 華中科技大學, 2018

    Yu J. Investigation on Stress Corrosion Cracking Mechanism and Monitoring Method of P110 Tubing Steel in Simulated Annulus Fluid[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1571) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频