Citation: | CUI Huai-yun, MEI Peng-cheng, LIU Zhi-yong, LU Lin. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well[J]. Chinese Journal of Engineering, 2020, 42(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2020.04.13.004 |
[1] |
Mohsenzadeh A, Escrochi M, Afraz M V, et al. Non-hydrocarbon gas injection followed by steam–gas co-injection for heavy oil recovery enhancement from fractured carbonate reservoirs. <italic>J Petrol Sci Eng</italic>, 2016, 144: 121 doi: 10.1016/j.petrol.2016.03.003
|
[2] |
Wang S H. Multiphysical Simulation of CO2 Enhanced Oil Recovery in Unconventional Reservoirs: from Fundamental Physics to Simulator Development[Dissertation]. Colorado: Colorado School of Mines, 2019
|
[3] |
李明杰. CO2體系中緩蝕劑對碳鋼緩蝕機理和協同效應的研究[學位論文]. 北京: 北京化工大學, 2017
Li M J. Study of the Corrosion Inhibition Mechanism and Synergistic Effect of Inhibitor on Carbon Steel in CO2 System[Dissertation]. Beijing: Beijing University of Chemical Technology, 2017
|
[4] |
趙毅, 許艷艷, 朱原原, 等. 油氣集輸管道內防腐技術應用進展. 裝備環境工程, 2018, 15(6):53
Zhao Y, Xu Y Y, Zhu Y Y, et al. Research status on internal corrosion protection technology of oil & gas transportation pipeline. <italic>Equip Environ Eng</italic>, 2018, 15(6): 53
|
[5] |
張晨. CO2/H2S腐蝕體系中緩蝕劑的緩蝕機理及協同效應研究[學位論文]. 北京: 北京化工大學, 2018
Zhang C. Study of the Corrosion Inhibition Mechanism and the Synergistic Corrosion Inhibition Effect of Inhibitors CO2/H2S System[Dissertation]. Beijing: Beijing University of Chemical Technology, 2018
|
[6] |
Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H<sub>2</sub>S/CO<sub>2</sub> annular environment. <italic>J Mater Eng Perform</italic>, 2014, 23(4): 1279 doi: 10.1007/s11665-013-0855-x
|
[7] |
Monnot M, Nogueira R P, Roche V, et al. Sulfide stress corrosion study of a super martensitic stainless steel in H<sub>2</sub>S sour environments: Metallic sulfides formation and hydrogen embrittlement. <italic>Appl Surf Sci</italic>, 2017, 394: 132 doi: 10.1016/j.apsusc.2016.10.072
|
[8] |
劉然克, 王立賢, 劉智勇, 等. 咪唑啉類緩蝕劑對P110鋼在CO<sub>2</sub>注入井環空環境中應力腐蝕行為的影響. 表面技術, 2015, 44(3):25
Liu R K, Wang L X, Liu Z Y, et al. Effect of imidazoline corrosion inhibitor on stress corrosion cracking behavior of P110 steel in simulated annulus environment in CO<sub>2</sub> injection wells. <italic>Surf Technol</italic>, 2015, 44(3): 25
|
[9] |
劉然克, 尹國軍, 韋春艷, 等. 環空環境下P110油管鋼的電化學腐蝕行為. 腐蝕科學與防護技術, 2013, 25(6):451
Liu R K, Yin G J, Wei C Y, et al. Electrochemical corrosion behavior of P110 tubing steel in annular environment. <italic>Corros Sci Prot Technol</italic>, 2013, 25(6): 451
|
[10] |
Bao M Y, Ren C Q, Lei M Y, et al. Electrochemical behavior of tensile stressed P110 steel in CO<sub>2</sub> environment. <italic>Corros Sci</italic>, 2016, 112: 585 doi: 10.1016/j.corsci.2016.08.021
|
[11] |
Sun C, Li J K, Shuang S, et al. Effect of defect on corrosion behavior of electroless Ni?P coating in CO<sub>2</sub>-saturated NaCl solution. <italic>Corros Sci</italic>, 2018, 134: 23 doi: 10.1016/j.corsci.2018.01.041
|
[12] |
Sun C, Liu S B, Li J K, et al. Insights into the interfacial process in electroless Ni?P coating on supercritical CO<sub>2</sub> transport pipeline as relevant to carbon capture and storage. <italic>ACS Appl Mater Interfaces</italic>, 2019, 11(17): 16243 doi: 10.1021/acsami.9b03623
|
[13] |
Zhu M, Du C W, Li X G, et al. Effect of AC current density on stress corrosion cracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution. <italic>Electrochim Acta</italic>, 2014, 117: 351 doi: 10.1016/j.electacta.2013.11.149
|
[14] |
Lei X W, Feng Y R, Fu A Q, et al. Investigation of stress corrosion cracking behavior of super 13Cr tubing by full-scale tubular goods corrosion test system. <italic>Eng Fail Anal</italic>, 2015, 50: 62 doi: 10.1016/j.engfailanal.2015.02.001
|
[15] |
Liu Z Y, Lu L, Huang Y Z, et al. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water. <italic>Corrosion</italic>, 2014, 70(7): 678 doi: 10.5006/1153
|
[16] |
Liu Z Y, Li X G, Zhang Y R, et al. Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution. <italic>Acta Metall Sin </italic>(<italic>Engl Lett</italic>)<italic></italic>, 2009, 22(1): 58 doi: 10.1016/S1006-7191(08)60071-X
|
[17] |
Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment. <italic>Corros Sci</italic>, 2009, 51(4): 895 doi: 10.1016/j.corsci.2009.01.007
|
[18] |
Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment. <italic>Corros Sci</italic>, 2008, 50(8): 2251 doi: 10.1016/j.corsci.2008.05.011
|
[19] |
Parkins R N, Zhou S. The stress corrosion cracking of C?Mn steel in CO<sub>2</sub>?<inline-formula> <tex-math id="M50-1"> $ {\rm{HCO}}_3^ - - {\rm{CO}}_3^{2 - } $ \normalsize </tex-math></inline-formula> solutions. I: stress corrosion data. <italic>Corros Sci</italic>, 1997, 39(1): 159 doi: 10.1016/S0010-938X(96)00116-3
|
[20] |
Park J J, Pyun S I, Na K H, et al. Effect of passivity of the oxide film on low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution. <italic>Corrosion</italic>, 2002, 58(4): 329 doi: 10.5006/1.3287682
|
[21] |
ASTM. ASTM G170 Standard Guide for Evaluating and Qualifying Oilfield and Refinery Corrosion Inhibitors in the Laboratory. ASTM International, 2012
|
[22] |
鋼鐵研究總院, 上海材料研究所. GB/T 15970.2—2000 金屬和合金的腐蝕應力腐蝕試驗?第2部分: 彎梁試樣的制備和應用. 北京: 中國標準出版社, 2000
Central Iron & Steel Research Institute, Shanghai Research Institute of Materials. GB/T 15970.2—2000 Corrosion of Metals and Alloys-Stress Corrosion Testing Part 2: Preparation and Use of Bent-Beam Specimens. Beijing: Standards Press of China, 2000
|
[23] |
Askari M, Aliofkhazraei M, Ghaffari S, et al. Film former corrosion inhibitors for oil and gas pipelines?a technical review. <italic>J Nat Gas Sci Eng</italic>, 2018, 58: 92 doi: 10.1016/j.jngse.2018.07.025
|
[24] |
Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO<sub>2</sub> condition. <italic>Corros Sci</italic>, 2017, 120: 107 doi: 10.1016/j.corsci.2017.02.012
|
[25] |
張博. 模擬深海環境10CrSiNiCu鋼腐蝕及氫損傷行為研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2014
Zhang B. The Corrosion and Hydrogen Damage Behaviour of 10CrSiNiCu Steel in the Simulated Deep Sea Environment[Dissertation]. Harbin: Harbin Engineering University, 2014
|
[26] |
余軍, 張德平, 潘若生, 等. 井下含硫環空液中P110油管鋼應力腐蝕開裂的電化學噪聲特征. 金屬學報, 2018, 54(10):1399
Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid. <italic>Acta Metall Sin</italic>, 2018, 54(10): 1399
|
[27] |
李建平, 趙國仙, 王玉, 等. 塔里木油田用油套管鋼的靜態腐蝕研究. 中國腐蝕與防護學報, 2004, 24(4):230
Li J P, Zhao G X, Wang Y, et al. Static corrosion of oil thimble used in tarim oil field. <italic>J Chin Soc Corros Prot</italic>, 2004, 24(4): 230
|
[28] |
余軍. P110油管鋼在模擬環空液中的應力腐蝕開裂機理與監測方法研究[學位論文]. 武漢: 華中科技大學, 2018
Yu J. Investigation on Stress Corrosion Cracking Mechanism and Monitoring Method of P110 Tubing Steel in Simulated Annulus Fluid[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018
|