<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue S
Dec.  2020
Turn off MathJax
Article Contents
WANG Hao, BAO Yan-ping, ZHI Jian-guo, GAO Shuai, WANG Min, SHI Chao. Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process[J]. Chinese Journal of Engineering, 2020, 42(S): 1-8. doi: 10.13374/j.issn2095-9389.2020.04.06.s11
Citation: WANG Hao, BAO Yan-ping, ZHI Jian-guo, GAO Shuai, WANG Min, SHI Chao. Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process[J]. Chinese Journal of Engineering, 2020, 42(S): 1-8. doi: 10.13374/j.issn2095-9389.2020.04.06.s11

Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process

doi: 10.13374/j.issn2095-9389.2020.04.06.s11
More Information
  • Corresponding author: E-mail: baoyp@ustb.edu.cn
  • Received Date: 2020-04-06
  • Publish Date: 2020-12-25
  • The control of MnS inclusions in high strength IF steel containing phosphorus was analyzed. The inclusion statistics and two-dimensional morphologies of the samples at the slab thicknesses of 1/8, 1/2, and 7/8 and in hot rolling, cold rolling, and continuous annealing processes were observed and compared via an ASPEX scanning electron microscope (SEM). In addition, the three-dimensional morphologies of the inclusions extracted from the electrolysis of billet samples and inclusions extracted from the original rolling process samples were observed and compared. The results show that the amount distribution of MnS inclusions in the center of the slab is obviously larger than that near the surface of the slab. When a rare earth element is added, it is preferentially combined with the S in the steel and precipitates earlier than MnS in the solidification process, forming small spherical inclusions, which can significantly reduce the size and quantity of MnS inclusions at various positions of the slab. The size of MnS inclusions of the steel strip without a rare earth element addition is approximately 10 μm in each rolling process, which is inherited. During the rolling process, MnS inclusions become longer, but there is no fragmentation and dispersion. S–O–Ce inclusions are formed after adding a rare earth element. These inclusions are spherical, 2–5 μm in size, and distributed independently, which do not affect the structure continuity of the strip steel and benefit the relevant properties of the products.

     

  • loading
  • [1]
    王暢, 于洋, 劉珂, 等. 含磷高強IF鋼熱軋軋裂的形成原因及控制. 中國冶金, 2016, 26(1):17

    Wang C, Yu Y, Liu K, et al. Forming reason and control of strip fracture in high strength IF steel containing phosphorus during hot-rolling process. China Metall, 2016, 26(1): 17
    [2]
    熊道禮, 毛衛民. 含磷高強IF鋼中FeTiP相的脫溶及硬化現象. 北京科技大學學報, 2000, 22(4):350 doi: 10.3321/j.issn:1001-053X.2000.04.017

    Xiong D L, Mao W M. Precipitation hardening of FeTiP phase in P-added high strength IF steel. J Univ Sci Technol Beijing, 2000, 22(4): 350 doi: 10.3321/j.issn:1001-053X.2000.04.017
    [3]
    Wang M, Bao Y P, Yang Q, et al. Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process. Int J Miner Metall Mater, 2015, 22(12): 1252 doi: 10.1007/s12613-015-1192-x
    [4]
    Li Y H, Bao Y P, Wang R, et al. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process. Int J Miner Metall Mater, 2018, 25(2): 153 doi: 10.1007/s12613-018-1558-y
    [5]
    Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8
    [6]
    Li X, Bao Y P, Wang M, et al. Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface. Int J Miner Metall Mater, 2016, 23(5): 511 doi: 10.1007/s12613-016-1262-8
    [7]
    Wang R, Bao Y P, Li Y H, et al. Influence of metallurgical processing parameters on defects in cold-rolled steel sheet caused by inclusions. Int J Miner Metall Mater, 2019, 26(4): 440 doi: 10.1007/s12613-019-1751-7
    [8]
    Wang R, Bao Y P, Yan Z J, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets. Int J Miner Metall Mater, 2019, 26(2): 178 doi: 10.1007/s12613-019-1722-z
    [9]
    Tavares S S M, Pardal J M, Martins T R B, et al. Influence of sulfur content on the corrosion resistance of 17-4PH stainless steel. J Mater Eng Perform, 2017, 26(6): 2512 doi: 10.1007/s11665-017-2693-8
    [10]
    Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes. JOM, 2018, 70(11): 2513 doi: 10.1007/s11837-018-3026-6
    [11]
    Liu X G, Wang C, Deng Q F, et al. High-temperature fracture behavior of MnS inclusions based on GTN model. J Iron Steel Res Int, 2019, 26(9): 941 doi: 10.1007/s42243-018-0202-4
    [12]
    潘曉倩, 楊健, 職建軍, 等. 超低碳汽車外板BH鋼煉鋼過程中夾雜物的演變. 鋼鐵, 2019, 54(8):48

    Pan X Q, Yang J, Zhi J J, et al. Evolution of inclusions in steelmaking process for ultra low carbon BH auto exposed panel. Iron Steel, 2019, 54(8): 48
    [13]
    黃宇, 成國光, 謝有. 稀土Ce對釬具鋼中夾雜物的改質機理研究. 金屬學報, 2018, 54(9):1253 doi: 10.11900/0412.1961.2018.00079

    Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel. Acta Metall Sin, 2018, 54(9): 1253 doi: 10.11900/0412.1961.2018.00079
    [14]
    Gao S, Wang M, Guo J L, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al-killed titanium alloyed interstitial free steel. Steel Res Int, 2019, 90(10): 1900194 doi: 10.1002/srin.201900194
    [15]
    Hu D L, Liu H, Xie J B, et al. Analysis of precipitation behavior of MnS in sulfur-bearing steel system with finite-difference segregation model. J Iron Steel Res Int, 2018, 25(8): 803 doi: 10.1007/s42243-018-0117-0
    [16]
    陳士富, 劉學, 雷洪, 等. 錳鋼凝固過程中MnS夾雜物析出行為. 遼寧科技大學學報, 2017, 40(4):241

    Chen S F, Liu X, Lei H, et al. Precipitation behavior of MnS inclusions during solidification of manganese steel. J Univ Sci Technol Liaoning, 2017, 40(4): 241
    [17]
    鄭萬, 齊盼盼, 沈星, 等. 低碳低硫鋼中MnS析出行為分析. 武漢科技大學學報:自然科學版, 2016, 39(4):241

    Zheng W, Qi P P, Shen X, et al. Precipitation behavior of MnS in low-carbon low-sulfur steel. J Wuhan Univ Sci Technol, 2016, 39(4): 241
    [18]
    Goto H, Miyazawa K I, Yamaguchi K I, et al. Effect of cooling rate on oxide precipitation during solidification of low carbon steels. ISIJ Int, 1994, 34(5): 414 doi: 10.2355/isijinternational.34.414
    [19]
    Chen Y L, Wang Y, Zhao A M. Precipitation of AIN and MnS in low carbon aluminium-killed steel. J Iron Steel Res Int, 2012, 19(4): 51 doi: 10.1016/S1006-706X(12)60087-9
    [20]
    Wang H, Bao Y P, Zhao M, et al. Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process. Int J Miner Metall Mater, 2019, 26(11): 1372 doi: 10.1007/s12613-019-1871-0
    [21]
    Li M L, Wang F M, Li C R, et al. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels. Int J Miner Metall Mater, 2015, 22(6): 589 doi: 10.1007/s12613-015-1111-1
    [22]
    Yan J C, Li T, Shang Z Q, et al. Three-dimensional characterization of MnS inclusions in steel during rolling process. Mater Charact, 2019, 158: 109944 doi: 10.1016/j.matchar.2019.109944
    [23]
    Liu Y Q, Wang L J, Chou K C. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths, 2014, 32(8): 759 doi: 10.1016/S1002-0721(14)60137-X
    [24]
    程昌學, 楊湘杰, 何毅, 等. Ce對A356合金的影響及細化機制的研究. 稀有金屬, 2018, 42(11):1127

    Cheng C X, Yang X J, He Y, et al. The effect of Ce on A356 alloy and the study of its refining mechanism. Chin J Rare Met, 2018, 42(11): 1127
    [25]
    周宇, 劉偉東, 閻杰, 等. 稀土元素對MnS夾雜物變形能力影響的價電子理論分析. 稀有金屬, 2006, 30(2):185 doi: 10.3969/j.issn.0258-7076.2006.02.014

    Zhou Y, Liu W D, Yan J, et al. Valence electron theoretical interpretation on effect of rare-earth on antideformability of MnS. Chin J Rare Met, 2006, 30(2): 185 doi: 10.3969/j.issn.0258-7076.2006.02.014
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (973) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频