Citation: | LIU Hong-bo, LI Jian-xin, LIN Zhang-guo, LI Yu-qian, TIAN Zhi-qiang, DU Qi-ming, MEI Dong-gui, LIU Chong, LIU Zhan-li, MA Hao-ran. Production technology and welding properties of high heat input welding EH420 offshore steel[J]. Chinese Journal of Engineering, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001 |
[1] |
雷毅, 許曉鋒, 余圣甫, 等. 面向高性能結構材料的超細晶粒鋼研究現狀及發展方向. 中國石油大學學報: 自然科學版, 2007, 31(2):155
Lei Y, Xu X F, Yu S F, et al. Present status and developmental direction of high performance structural material-oriented ultra-fine grained steel. J China Univ Pet Ed Nat Sci, 2007, 31(2): 155
|
[2] |
Ding F B, Huang Y. Progress of the Chinese shipbuilding industry and welding technology. China Weld, 1994, 3(2): 105
|
[3] |
Xu L Y, Yang J, Wang R Z. Influence of Al content on the inclusion-microstructure relationship in the heat-affected zone of a steel plate with Mg deoxidation after high-heat-input welding. Metals, 2018, 8(12): 1027 doi: 10.3390/met8121027
|
[4] |
Cai Z Y, Kong H. Inclusion and microstructure characteristics in a steel sample with TiO2 nanoparticle addition and Mg treatment. Metals, 2019, 9(2): 171 doi: 10.3390/met9020171
|
[5] |
李靜, 王華, 曲圣昱, 等. 焊接熱循環參數對大線能量焊接用鋼EH40熱影響區組織和性能的影響. 北京科技大學學報, 2012, 34(7):788
Li J, Wa ng, H, Qu S Y, et al. Effect of welding thermal cycle parameters on the microstructure and properties in the heat affected zone of steel EH40 for high heat input welding. J Univ Sci Technol Beijing, 2012, 34(7): 788
|
[6] |
Takamura J, Mizoguchi S. Roles of oxides in steel performance—Metallurgy of oxides in steels 1// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 591
|
[7] |
Mizoguchi S, Takamura J. Control of oxide as inculants—Metallurgy of oxides in steels 2// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 598
|
[8] |
Sawai T, Wakooh M, Ueshima Y, et al. Effect of Zr on the precipitation of MnS in low carbon steels—Metallurgy of oxides in steels 3// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 605
|
[9] |
Ogibayashi S, Yamaguchi K, Hirai H, et al. The feature of oxides in Ti-deoxidized steel—Metallurgy of oxides in steel 4 // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 612
|
[10] |
史美倫, 段貴生. 氧化物冶金技術應用及進展. 河南冶金, 2010, 18(5):1 doi: 10.3969/j.issn.1006-3129.2010.05.001
Shi M L, Duan G S. Application and progress of the oxides metallurgy technology. Henan Metall, 2010, 18(5): 1 doi: 10.3969/j.issn.1006-3129.2010.05.001
|
[11] |
Nagahara M, Fukami H. 530 N/mm3 tensile strength grade steel plate for multi-purpose gas carrier. Nippon Steel Tech Rep, 2004, 5: 19
|
[12] |
楊才福, 柴鋒, 蘇航. 大線能量焊接船體鋼的研究. 上海金屬, 2010, 32(1):1 doi: 10.3969/j.issn.1001-7208.2010.01.001
Yang C F, Chai F, Su H. Study of ship hull steel for high heat input welding. Shanghai Met, 2010, 32(1): 1 doi: 10.3969/j.issn.1001-7208.2010.01.001
|
[13] |
Kimura T, Sumi H, Kitani Y. High tensile strength steel plate and welding consumables for architectural construction with excellent toughness in welded joint. JFE Tech Rep, 2005, 5: 45
|
[14] |
楊健, 祝凱, 王聰, 等. 改善厚板大線能量焊接性能的氧化物冶金的研究進展 // 第十五屆全國煉鋼學術會議論文集. 廈門, 2008: 568
Yang J, Zhu K, Wang C, et al. Progress in oxide metallurgy for development of steel plates for high heat input welding // Proceedings of the 15th Annual Meeting on Steelmaking. Xiamen, 2008: 568
|
[15] |
付魁軍, 及玉梅, 王佳驥, 等. 大線能量焊接用船體結構鋼的研究進展. 鞍鋼技術, 2011(6):7 doi: 10.3969/j.issn.1006-4613.2011.06.002
Fu K J, Ji Y M, Wang J J, et al. Research progress on hull structural steels by high heat input welding. Angang Technol, 2011(6): 7 doi: 10.3969/j.issn.1006-4613.2011.06.002
|
[16] |
岡野重雄, 小林洋一郎, 柴田光明, 等. 大型コンテナ船用大入熱溶接型 YP355~460 MPa級鋼板及び溶接材料. 神戸製鋼技報, 2002, 52(1):2
Shigeo O, Yoichiro K, Mitsuaki S, et al. 355?460 MPa yield point steel plates and welding consumables for large heat-input welding for giant container ships. Kobe Steel Eng Rep, 2002, 52(1): 2
|
[17] |
鄭萬, 劉磊, 李光強, 等. Ti?Mg復合脫氧鋼中夾雜物細化機制. 工程科學學報, 2015, 37(7):873
Zheng W, Liu L, Li G Q, et al. Refinement mechanisms of inclusions in steel by Ti?Mg complex deoxidation. Chin J Eng, 2015, 37(7): 873
|
[18] |
沈海軍. 低碳鋼中超細夾雜物控制技術研究[學位論文]. 沈陽: 東北大學, 2008
Shen H J. Research on Control Technology for Super-Fine Inclusions in Low Carbon Steel[Dissertation]. Shenyang: Northeastern University, 2008
|
[19] |
王丙興, 武仲子, 婁號南, 等. 氧化物冶金工藝對EH36鋼HAZ組織性能的影響. 鋼鐵研究學報, 2019, 31(2):239
Wang B X, Wu Z Z, Lou H N, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel. J Iron Steel Res, 2019, 31(2): 239
|
[20] |
鄧小旋, 王新華, 姜敏, 等. 稀土處理鋼中夾雜物對晶內針狀鐵素體形成的影響. 北京科技大學學報, 2012, 34(5):535
Deng X X, Wang X H, Jiang M, et al. Effect of inclusions on the formation of intra-granular acicular ferrite in steels containing rare earth elements. J Univ Sci Technol Beijing, 2012, 34(5): 535
|
[21] |
Zhang P, Wang X S, Long J, et al. Development and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships // Proceedings of the Twenty-eighth International Ocean and Polar Engineering Conference. Sapporo, 2018: 1569
|
[22] |
Zhu K, Yang J, Wang R Z, et al. Effect of Mg addition on inhibiting austenite grain growth in heat affected zones of Ti-bearing low carbon steels. J Iron Steel Res Int, 2011, 18(9): 60 doi: 10.1016/S1006-706X(12)60035-1
|
[23] |
王丙興, 朱伏先, 王超, 等. 氧化物冶金在大線能量焊接用鋼中的應用. 鋼鐵, 2019, 54(9):12
Wang B X, Zhu F X, Wang C, et al. Application of oxide metallurgy in high heat input welding steels. Iron Steel, 2019, 54(9): 12
|
[24] |
李文曉, 郭慧英, 陳剛, 等. 大線能量焊接EH36船板鋼FCB焊接接頭組織與性能. 電焊機, 2017, 47(8):1
Li W X, Guo H Y, Chen G, et al. Microstructure and properties of FCB weld joint of shipbuilding steel EH36 for high heat input welding. Electr Weld Mach, 2017, 47(8): 1
|
[25] |
Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 doi: 10.2355/isijinternational.35.1027
|
[26] |
王超. 氧化物冶金型大線能量焊接用鋼組織性能調控與生產工藝研究[學位論文]. 沈陽: 東北大學, 2017
Wang C. Microstructure and Properties Control of Oxide Metallurgical Steels for High Heat Input Welding and Its Production Technology Research[Dissertation]. Shenyang: Northeastern University, 2017
|
[27] |
Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti?Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534
|
[28] |
Kim Y M, Lee H, Kim N J. Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A, 2008, 478(1-2): 361 doi: 10.1016/j.msea.2007.06.035
|
[29] |
Sung H K, Sang S Y, Cha W, et al. Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels. Mater Sci Eng A, 2011, 528(9): 3350 doi: 10.1016/j.msea.2011.01.031
|
[30] |
李遠遠, 吳銘方, 浦娟. 不同厚度DH36船用板FAB埋弧焊縫微觀組織及力學性能研究. 熱加工工藝, 2017, 46(7):232
Li Y Y, Wu M F, Pu J. Study on microstructure and mechanical properties of FAB submerged arc weld for DH36 ship plate with different thickness. Hot Work Technol, 2017, 46(7): 232
|
[31] |
舒瑋, 王學敏, 李書瑞, 等. 焊接熱影響區針狀鐵素體的形核長大及其對組織的細化作用. 金屬學報, 2011, 47(4):435
Shu W, Wang X M, Li S R, et al. Nucleation and growth of intergranular acicular ferrite and its effect on grain refinement of the heat-affected-zone. Acta Metall Sinica, 2011, 47(4): 435
|
[32] |
Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel. Acta Mater., 1999, 47(9): 2751 doi: 10.1016/S1359-6454(99)00114-7
|
[33] |
Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
|
[34] |
Zhuo X J, Wang Y Q, Wang X H, et al. Thermodynamic calculation and MnS solubility of Mn?Ti oxide formation in Si?Mn?Ti deoxidized steel. J Iron Steel Res Int, 2010, 17(2): 10 doi: 10.1016/S1006-706X(10)60051-9
|