<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
LIU Hong-bo, LI Jian-xin, LIN Zhang-guo, LI Yu-qian, TIAN Zhi-qiang, DU Qi-ming, MEI Dong-gui, LIU Chong, LIU Zhan-li, MA Hao-ran. Production technology and welding properties of high heat input welding EH420 offshore steel[J]. Chinese Journal of Engineering, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001
Citation: LIU Hong-bo, LI Jian-xin, LIN Zhang-guo, LI Yu-qian, TIAN Zhi-qiang, DU Qi-ming, MEI Dong-gui, LIU Chong, LIU Zhan-li, MA Hao-ran. Production technology and welding properties of high heat input welding EH420 offshore steel[J]. Chinese Journal of Engineering, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001

Production technology and welding properties of high heat input welding EH420 offshore steel

doi: 10.13374/j.issn2095-9389.2020.03.23.001
More Information
  • Extensive efforts have been made to remove “harmful” inclusions during the steelmaking process. However, the concept of “oxide metallurgy” was proposed, where fine inclusions are used to induce the formation of acicular ferrite and pin the grain boundary, thus enhancing the low temperature toughness of the heat-affected zone (HAZ). The technology of improving the toughness of HAZ by forming TiOx?MgO?CaO fine particles (ITFFP) in steel has been successfully applied to the trial production of 30 mm (H30) and 60 mm (H60) thick high heat input welding EH420 offshore steel. The mechanical testing results show that the yield strength, tensile strength, and elongation of H30 steel are 461 MPa, 579 MPa, and 26%, respectively. In addition, the yield strength, tensile strength, and elongation of H60 steel are 534 MPa, 628 MPa, and 24.5%, respectively. The tested H30 and H60 steels achieved the national standard of EH420 offshore steel. The effect of ITFFP technology on the microstructure and impact toughness in the HAZ of H30 and H60 steels subjected to a 200 kJ·cm?1 heat input were investigated using a Gleeble-3800 welding simulation machine and Charpy impact tests. The results indicate that the CaO(?MgO)?Al2O3?TiOx?MnS formed in the tested steels induces the formation of acicular ferrite, and thus significantly improves the impact toughness. Additionally, electrode-gas welding with heat inputs of 247 kJ·cm?1 and 224 kJ·cm?1 was applied to H30 and H60 steels. The experimental results show that the impact absorbed energy of the weld in H30 tested steel is larger than 74 J at ?40 ℃, and the HAZ exhibits an absorbed energy larger than 115 J at ?40 ℃. In addition, the impact absorbed energy of the weld in H60 tested steel is larger than 91 J at ?40 ℃, and the HAZ exhibits an absorbed energy larger than 75 J at ?40 ℃. The impact absorbed energy of welded joints is much higher than the requirement of the national standard (42 J).

     

  • loading
  • [1]
    雷毅, 許曉鋒, 余圣甫, 等. 面向高性能結構材料的超細晶粒鋼研究現狀及發展方向. 中國石油大學學報: 自然科學版, 2007, 31(2):155

    Lei Y, Xu X F, Yu S F, et al. Present status and developmental direction of high performance structural material-oriented ultra-fine grained steel. J China Univ Pet Ed Nat Sci, 2007, 31(2): 155
    [2]
    Ding F B, Huang Y. Progress of the Chinese shipbuilding industry and welding technology. China Weld, 1994, 3(2): 105
    [3]
    Xu L Y, Yang J, Wang R Z. Influence of Al content on the inclusion-microstructure relationship in the heat-affected zone of a steel plate with Mg deoxidation after high-heat-input welding. Metals, 2018, 8(12): 1027 doi: 10.3390/met8121027
    [4]
    Cai Z Y, Kong H. Inclusion and microstructure characteristics in a steel sample with TiO2 nanoparticle addition and Mg treatment. Metals, 2019, 9(2): 171 doi: 10.3390/met9020171
    [5]
    李靜, 王華, 曲圣昱, 等. 焊接熱循環參數對大線能量焊接用鋼EH40熱影響區組織和性能的影響. 北京科技大學學報, 2012, 34(7):788

    Li J, Wa ng, H, Qu S Y, et al. Effect of welding thermal cycle parameters on the microstructure and properties in the heat affected zone of steel EH40 for high heat input welding. J Univ Sci Technol Beijing, 2012, 34(7): 788
    [6]
    Takamura J, Mizoguchi S. Roles of oxides in steel performance—Metallurgy of oxides in steels 1// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 591
    [7]
    Mizoguchi S, Takamura J. Control of oxide as inculants—Metallurgy of oxides in steels 2// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 598
    [8]
    Sawai T, Wakooh M, Ueshima Y, et al. Effect of Zr on the precipitation of MnS in low carbon steels—Metallurgy of oxides in steels 3// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 605
    [9]
    Ogibayashi S, Yamaguchi K, Hirai H, et al. The feature of oxides in Ti-deoxidized steel—Metallurgy of oxides in steel 4 // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 612
    [10]
    史美倫, 段貴生. 氧化物冶金技術應用及進展. 河南冶金, 2010, 18(5):1 doi: 10.3969/j.issn.1006-3129.2010.05.001

    Shi M L, Duan G S. Application and progress of the oxides metallurgy technology. Henan Metall, 2010, 18(5): 1 doi: 10.3969/j.issn.1006-3129.2010.05.001
    [11]
    Nagahara M, Fukami H. 530 N/mm3 tensile strength grade steel plate for multi-purpose gas carrier. Nippon Steel Tech Rep, 2004, 5: 19
    [12]
    楊才福, 柴鋒, 蘇航. 大線能量焊接船體鋼的研究. 上海金屬, 2010, 32(1):1 doi: 10.3969/j.issn.1001-7208.2010.01.001

    Yang C F, Chai F, Su H. Study of ship hull steel for high heat input welding. Shanghai Met, 2010, 32(1): 1 doi: 10.3969/j.issn.1001-7208.2010.01.001
    [13]
    Kimura T, Sumi H, Kitani Y. High tensile strength steel plate and welding consumables for architectural construction with excellent toughness in welded joint. JFE Tech Rep, 2005, 5: 45
    [14]
    楊健, 祝凱, 王聰, 等. 改善厚板大線能量焊接性能的氧化物冶金的研究進展 // 第十五屆全國煉鋼學術會議論文集. 廈門, 2008: 568

    Yang J, Zhu K, Wang C, et al. Progress in oxide metallurgy for development of steel plates for high heat input welding // Proceedings of the 15th Annual Meeting on Steelmaking. Xiamen, 2008: 568
    [15]
    付魁軍, 及玉梅, 王佳驥, 等. 大線能量焊接用船體結構鋼的研究進展. 鞍鋼技術, 2011(6):7 doi: 10.3969/j.issn.1006-4613.2011.06.002

    Fu K J, Ji Y M, Wang J J, et al. Research progress on hull structural steels by high heat input welding. Angang Technol, 2011(6): 7 doi: 10.3969/j.issn.1006-4613.2011.06.002
    [16]
    岡野重雄, 小林洋一郎, 柴田光明, 等. 大型コンテナ船用大入熱溶接型 YP355~460 MPa級鋼板及び溶接材料. 神戸製鋼技報, 2002, 52(1):2

    Shigeo O, Yoichiro K, Mitsuaki S, et al. 355?460 MPa yield point steel plates and welding consumables for large heat-input welding for giant container ships. Kobe Steel Eng Rep, 2002, 52(1): 2
    [17]
    鄭萬, 劉磊, 李光強, 等. Ti?Mg復合脫氧鋼中夾雜物細化機制. 工程科學學報, 2015, 37(7):873

    Zheng W, Liu L, Li G Q, et al. Refinement mechanisms of inclusions in steel by Ti?Mg complex deoxidation. Chin J Eng, 2015, 37(7): 873
    [18]
    沈海軍. 低碳鋼中超細夾雜物控制技術研究[學位論文]. 沈陽: 東北大學, 2008

    Shen H J. Research on Control Technology for Super-Fine Inclusions in Low Carbon Steel[Dissertation]. Shenyang: Northeastern University, 2008
    [19]
    王丙興, 武仲子, 婁號南, 等. 氧化物冶金工藝對EH36鋼HAZ組織性能的影響. 鋼鐵研究學報, 2019, 31(2):239

    Wang B X, Wu Z Z, Lou H N, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel. J Iron Steel Res, 2019, 31(2): 239
    [20]
    鄧小旋, 王新華, 姜敏, 等. 稀土處理鋼中夾雜物對晶內針狀鐵素體形成的影響. 北京科技大學學報, 2012, 34(5):535

    Deng X X, Wang X H, Jiang M, et al. Effect of inclusions on the formation of intra-granular acicular ferrite in steels containing rare earth elements. J Univ Sci Technol Beijing, 2012, 34(5): 535
    [21]
    Zhang P, Wang X S, Long J, et al. Development and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships // Proceedings of the Twenty-eighth International Ocean and Polar Engineering Conference. Sapporo, 2018: 1569
    [22]
    Zhu K, Yang J, Wang R Z, et al. Effect of Mg addition on inhibiting austenite grain growth in heat affected zones of Ti-bearing low carbon steels. J Iron Steel Res Int, 2011, 18(9): 60 doi: 10.1016/S1006-706X(12)60035-1
    [23]
    王丙興, 朱伏先, 王超, 等. 氧化物冶金在大線能量焊接用鋼中的應用. 鋼鐵, 2019, 54(9):12

    Wang B X, Zhu F X, Wang C, et al. Application of oxide metallurgy in high heat input welding steels. Iron Steel, 2019, 54(9): 12
    [24]
    李文曉, 郭慧英, 陳剛, 等. 大線能量焊接EH36船板鋼FCB焊接接頭組織與性能. 電焊機, 2017, 47(8):1

    Li W X, Guo H Y, Chen G, et al. Microstructure and properties of FCB weld joint of shipbuilding steel EH36 for high heat input welding. Electr Weld Mach, 2017, 47(8): 1
    [25]
    Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 doi: 10.2355/isijinternational.35.1027
    [26]
    王超. 氧化物冶金型大線能量焊接用鋼組織性能調控與生產工藝研究[學位論文]. 沈陽: 東北大學, 2017

    Wang C. Microstructure and Properties Control of Oxide Metallurgical Steels for High Heat Input Welding and Its Production Technology Research[Dissertation]. Shenyang: Northeastern University, 2017
    [27]
    Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti?Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534
    [28]
    Kim Y M, Lee H, Kim N J. Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A, 2008, 478(1-2): 361 doi: 10.1016/j.msea.2007.06.035
    [29]
    Sung H K, Sang S Y, Cha W, et al. Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels. Mater Sci Eng A, 2011, 528(9): 3350 doi: 10.1016/j.msea.2011.01.031
    [30]
    李遠遠, 吳銘方, 浦娟. 不同厚度DH36船用板FAB埋弧焊縫微觀組織及力學性能研究. 熱加工工藝, 2017, 46(7):232

    Li Y Y, Wu M F, Pu J. Study on microstructure and mechanical properties of FAB submerged arc weld for DH36 ship plate with different thickness. Hot Work Technol, 2017, 46(7): 232
    [31]
    舒瑋, 王學敏, 李書瑞, 等. 焊接熱影響區針狀鐵素體的形核長大及其對組織的細化作用. 金屬學報, 2011, 47(4):435

    Shu W, Wang X M, Li S R, et al. Nucleation and growth of intergranular acicular ferrite and its effect on grain refinement of the heat-affected-zone. Acta Metall Sinica, 2011, 47(4): 435
    [32]
    Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel. Acta Mater., 1999, 47(9): 2751 doi: 10.1016/S1359-6454(99)00114-7
    [33]
    Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
    [34]
    Zhuo X J, Wang Y Q, Wang X H, et al. Thermodynamic calculation and MnS solubility of Mn?Ti oxide formation in Si?Mn?Ti deoxidized steel. J Iron Steel Res Int, 2010, 17(2): 10 doi: 10.1016/S1006-706X(10)60051-9
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (2134) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频