Citation: | FAN Yue-wen, HU Xiao-jun, WANG Peng-dong, LI Yuan. Effects of carbon, aluminum and silicon on the dissolution rate of nitrogen into molten iron[J]. Chinese Journal of Engineering, 2020, 42(S): 34-38. doi: 10.13374/j.issn2095-9389.2020.03.15.s18 |
[1] |
Hamada J, Inoue H. Effect of nitrogen on planar anisotropy of the r-value and texture in lean duplex stainless steel sheets. ISIJ Int, 2019, 59(5): 935 doi: 10.2355/isijinternational.ISIJINT-2018-633
|
[2] |
Ogawa K, Seki A. Modeling of effects of temperature and alloying elements on austenite phase growth rate in duplex stainless steel. ISIJ Int, 2019, 59(9): 1614 doi: 10.2355/isijinternational.ISIJINT-2018-869
|
[3] |
Gu J B, Liu H Q, Li J Y, et al. Effect of nitrogen on microstructure and secondary hardening of H21 die steel. J Iron Steel Res Int, 2019, 26(5): 483 doi: 10.1007/s42243-018-0164-6
|
[4] |
Xu H F, Wu G L, Li J, et al. Microstructure, hardness and contact fatigue properties of X30N high nitrogen stainless bearing steel. J Iron Steel Res Int, 2018, 25(9): 954 doi: 10.1007/s42243-018-0138-8
|
[5] |
張寶麗, 陳剛, 孫永慶, 等. 氮含量對0Cr16Ni5Mo馬氏體不銹鋼高溫熱變形行為影響. 工程科學學報, 2017, 39(10):1525
Zhang B L, Chen G, Sun Y Q, et al. Effect of content on the hot deformation behaviour of 0Cr16Ni5Mo martensitic stainless steel. Chin J Eng, 2017, 39(10): 1525
|
[6] |
張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937
Zhang J, Liu J H, Yan B J, et al. Nonmetallic inclusion removal of Si-Mn deoxidized steel by nitrogen absorption and release method. Chin J Eng, 2018, 40(8): 937
|
[7] |
陳巍, 劉燕林, 田雨江, 等. 高氮鋼材料組織及性能研究. 兵器材料科學與工程, 2010, 33(6):65 doi: 10.3969/j.issn.1004-244X.2010.06.020
Chen W, Liu Y L, Tian Y J, et al. Microstructure and properties of high nitrogen steel. Ordn Mater Sci Eng, 2010, 33(6): 65 doi: 10.3969/j.issn.1004-244X.2010.06.020
|
[8] |
姜周華, 朱紅春, 李花兵, 等. 高氮不銹鋼開發和應用的最新進展 //第十屆中國鋼鐵年會暨第六屆寶鋼學術年會論文集Ⅱ. 上海, 2015: 1
Jiang Z H, Zhu H C, Li H B, et al. Latest Progress in development and application of high nitrogen stainless steels // Proceedings of the 10th CSM Steel Congress & the 6th Baosteel Biennial Academic Conference Ⅱ. Shanghai, 2015: 1
|
[9] |
戰東平, 邱國興, 牛奔, 等. 氮在鋼液中溶解的熱力學及動力學研究. 煉鋼, 2015, 31(5):7
Zhan D P, Qiu G X, Niu B, et al. Thermodynamics and kinetics research of nitrogen dissolution in steel. Steelmaking, 2015, 31(5): 7
|
[10] |
Pehlke R D, Elliott J F. Solubility of nitrogen in liquid iron alloys. Trans Met Soc AIME, 1960, 218: 1088
|
[11] |
Gomersall D W. Solubility of nitrogen in liquid iron alloys. Trans TMS-AIME, 1969, 242: 1309
|
[12] |
Byrne M, Belton G R. Studies of the interfacial kinetics of the reaction of nitrogen with liquid iron by the 15N-14N isotope exchange reaction. Metall Trans B, 1983, 14B: 441
|
[13] |
Glaws P C, Fruehan R J. The kinetics of the nitrogen reaction with liquid iron-sulfur alloys. Metall Trans B, 1985, 16B: 551
|
[14] |
Glaws P C, Fruehan R J. The kinetics of the nitrogen reaction with liquid iron-chromium alloys. Metall Trans B, 1986, 17: 317 doi: 10.1007/BF02655078
|
[15] |
Ono H, Morita K, Sano N. Effects of Ti, Zr, V, and Cr on the rate of nitrogen dissolution into molten iron. Metall Trans B, 1995, 26B: 991
|
[16] |
Ono H, Fukagawa H, Morita K, et al. Effects of O, Se, and Te on the rate of nitrogen dissolution in molten iron. Metall Trans B, 1996, 27B: 848
|
[17] |
Ono H, Iuchi K, Morita K, et al. Effects of oxygen and nitrogen on the rate of nitrogen dissolution in iron-chromium and iron-vanadium alloys. ISIJ Int, 2007, 36: 1245
|
[18] |
Han S M, Park J H, Jung S M, et al. Kinetic study on surface dissolution of nitrogen on liquid steel by isotope exchange technique. ISIJ Int, 2009, 49: 487 doi: 10.2355/isijinternational.49.487
|
[19] |
Morita K, Hirosumi T, Sano N. Effects of aluminium, silicon, and boron on the dissolution rate of nitrogen into molten iron. Metall Trans B, 2000, 31B: 889
|
[20] |
Harashima K, Mizoguchi S, Kajioka H, et al. Kinetics of nitrogen desorption from liquid iron with low nitrogen content under reduced pressures. Tetsu to Hagane, 1987, 73: 1559 doi: 10.2355/tetsutohagane1955.73.11_1559
|
[21] |
Eom C H, Song M H, Min D J. Interfacial kinetics of nitrogen dissolution in molten Fe?Mn?C alloys using 15N-14N isotope exchange reaction. ISIJ Int, 2015, 55: 2694 doi: 10.2355/isijinternational.ISIJINT-2015-321
|
[22] |
Lee J, Morita K. Interfacial kinetics of nitrogen with molten iron containing sulfur. ISIJ Int, 2003, 43: 14 doi: 10.2355/isijinternational.43.14
|
[23] |
張亞召, 胡曉軍, 平東平, 等. Fe?C合金熔體中氮的溶解行為研究. 河北冶金, 2017, 253(1):15
Zhang Y Z, Hu X J, Ping D P, et al. Study on solving action of nitrogen in melting Fe?C alloy. Hebei Metall, 2017, 253(1): 15
|
[24] |
平東平, 胡曉軍, 張亞召, 等. 14N-15N同位素交換技術及其在冶金動力學研究中的應用. 安徽工程大學學報, 2018, 33(2):34 doi: 10.3969/j.issn.2095-0977.2018.02.007
Ping D P, Hu X J, Zhang Y Z, et al. 14N-15N isotope exchange technique and its application in metallurgical kinetic study. J Anhui Polytechnic Univ, 2018, 33(2): 34 doi: 10.3969/j.issn.2095-0977.2018.02.007
|
[25] |
Kobayashi A, Tsukihashi F, Sano N. Kinetic Studies on the dissolution of nitrogen into molten iron by 14N-15N isotope exchange reaction. ISIJ Int., 1993, 33: 1131 doi: 10.2355/isijinternational.33.1131
|
[26] |
張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2006
Zhang J Y. Metallurgical Physical Chemistry, Beijing: Metallurgical Industry Press, 2006
|