<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
LI Zi-liang, XU Zhi-feng, ZHANG Xi, ZAN Miao-miao, LIU Zhi-lou. Mercury recovery from acidic mercury solution using electrodeposition[J]. Chinese Journal of Engineering, 2020, 42(8): 999-1006. doi: 10.13374/j.issn2095-9389.2020.03.15.001
Citation: LI Zi-liang, XU Zhi-feng, ZHANG Xi, ZAN Miao-miao, LIU Zhi-lou. Mercury recovery from acidic mercury solution using electrodeposition[J]. Chinese Journal of Engineering, 2020, 42(8): 999-1006. doi: 10.13374/j.issn2095-9389.2020.03.15.001

Mercury recovery from acidic mercury solution using electrodeposition

doi: 10.13374/j.issn2095-9389.2020.03.15.001
More Information
  • Corresponding author: E-mail: lzl8786489@163.com
  • Received Date: 2020-03-15
  • Publish Date: 2020-09-11
  • Mercury, a heavy metal, can seriously harm human bodies and the environment due to its characteristics of high toxicity, biological enrichment, and long-range migration. The non-ferrous metal smelting industry is one of the main sources of atmospheric mercury pollution in China. Therefore, controlling atmospheric mercury emissions from non-ferrous smelting plants is very important. The wet cleaning process has been widely applied in the purification of smelting flue gas because of its advantages such as a high removal efficiency, stable operation, and low cost. During the wet purification process, thiourea is usually added because it can reduce the oxidation potential of mercury and react with mercury to form stable coordination ions, resulting in the high-efficiency removal of mercury from high-sulfur smelting flue gas. However, mercury recovery from scrubbing solutions containing mercury and thiourea obtained from the wet cleaning process is difficult. In this study, a novel technology to recover mercury from the thiourea mercury solution via electrodeposition was proposed and investigated. The linear potential scanning method was applied to obtain the reduction potential of mercury. It was determined that the optimal potential of the mercury electrodeposition process should be controlled between ?0.55 V and ?0.45 V because the presence of ferric ions, copper ions, and sulfite ions did not seriously affect the electrodeposition of mercury. Controlled potential electrolysis was employed to efficiently recover mercury from thiourea mercury solution, and the effects of key parameters, including electrolyte type and concentration, electrolyte temperature, stirring rate, and electrolytic time, on the mercury recovery efficiency were explored. The optimal process conditions are as follows: a cathode material of copper sheet, electrolyte of 0.24 mol·L?1 Na2SO4, electrolyte temperature of 30–40 ℃, stirring speed of 100–300 r·min?1, $ {\rm{SO}}^{2-}_{3} $ concentration of 8 mmol·L?1, and electrolytic time of 5 h. Under the optimal process conditions, the mercury recovery efficiency mercury is over 98%. The electrolytic products on the cathode are elemental mercury, and the corresponding purity is over 99%.

     

  • loading
  • [1]
    盧光華, 岳昌盛, 彭犇, 等. 汞污染土壤修復技術的研究進展. 工程科學學報, 2017, 39(1):1

    Lu G H, Yue C S, Peng B, et al. Review of research progress on the remediation technology of mercury contaminated soil. <italic>Chin J Eng</italic>, 2017, 39(1): 1
    [2]
    劉開宇, 李元高, 唐有根, 等. 聚乙烯醇-丁基羅丹明B分光光度法測定電池及廢水中的痕量汞(II). 江西有色金屬, 2001, 15(1):37 doi: 10.3969/j.issn.1674-9669.2001.01.012

    Liu K Y, Li Y G, Tang Y G, et al. Spectrophotometric determination of trace Hg (II) in battery and waste water by polyvinyl alcohol-butyl rhodamine B. <italic>Jiangxi Nonferrous Met</italic>, 2001, 15(1): 37 doi: 10.3969/j.issn.1674-9669.2001.01.012
    [3]
    Liu Z L, Li Z L, Xie X F, et al. Development of recyclable iron sulfide/selenide microparticles with high performance for elemental mercury capture from smelting flue gas over a wide temperature range. <italic>Environ Sci Technol</italic>, 2020, 54(1): 604
    [4]
    師艷麗, 陳明, 李鳳果, 等. 土壤重金屬污染修復技術研究進展. 有色金屬科學與工程, 2018, 9(5):66

    Shi Y L, Chen M, Li F G, et al. Advances in remediation techniques for soil heavy metal pollution. <italic>Nonferrous Met Sci Eng</italic>, 2018, 9(5): 66
    [5]
    閆利剛, 李季, 孫堯, 等. 高濃度含汞鹽泥的穩定化技術工程應用試驗研究. 江西理工大學學報, 2017, 38(1):61

    Yan L G, Li J, Sun Y, et al. Application research on stabilization for remediation of salty mud with high mercury concentration. <italic>J Jiangxi Univ Sci Technol</italic>, 2017, 38(1): 61
    [6]
    劉友存, 劉正芳, 劉基, 等. 贛江上游龍逕河水體氨氮與重金屬污染分布特征及風險評價. 有色金屬科學與工程, 2019, 10(4):85

    Liu Y C, Liu Z F, Liu J, et al. Distribution characteristics and risk assessment of ammonia nitrogen and heavy metal pollution in Longjing river, the upstream of Ganjiang river. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(4): 85
    [7]
    胡鵬搏, 翁麒宇, 李端樂, 等. 模擬煙氣中氣態痕量元素污染物發生方法的研究現狀. 工程科學學報, https:doi: 10.13374/j.issn2095-9389.2020.03.05.006

    Hu P B, Weng L Y, Li D L, et al. Research status for generation methods of gaseous trace element pollutants in simulated flue gas. Chin J Eng, https://doi: 10.13374/j.issn2095-9389.2020.03.05.006
    [8]
    Liu Z L, Wang D L, Yang S, et al. Selective recovery of mercury from high mercury-containing smelting wastes using an iodide solution system. <italic>J Hazard Mater</italic>, 2019, 363: 179 doi: 10.1016/j.jhazmat.2018.09.001
    [9]
    Yang S, Wang D L, Liu H, et al. Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: Copper polysulfide modification. <italic>Chem Eng J</italic>, 2019, 358: 1235 doi: 10.1016/j.cej.2018.10.134
    [10]
    Liu H, Xie X F, Chen H, et al. SO<sub>2</sub> promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. <italic>Fuel</italic>, 2020, 261: 116367 doi: 10.1016/j.fuel.2019.116367
    [11]
    Yang S, Liu Z L, Yan X, et al. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO<sub>2</sub> catalyst. <italic>Energy Fuels</italic>, 2019, 33(11): 11380 doi: 10.1021/acs.energyfuels.9b02376
    [12]
    李子良, 徐志峰, 張溪, 等. 有色金屬冶煉煙氣中單質汞脫除研究現狀. 有色金屬科學與工程, 2020, 11(2):20

    Li Z L, Xu Z F, Zhang X, et al. Research status of elemental mercury removal from flue gas in non-ferrous metals production. <italic>Nonferrous Met Sci Eng</italic>, 2020, 11(2): 20
    [13]
    閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767

    Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. <italic>Chin J Eng</italic>, 2018, 40(7): 767
    [14]
    Liu Z L, Peng B, Chai L Y, et al. Selective removal of elemental mercury from high-concentration SO<sub>2</sub> flue gas by thiourea solution and investigation of mechanism. <italic>Ind Eng Chem Res</italic>, 2017, 56(15): 4281 doi: 10.1021/acs.iecr.7b00044
    [15]
    邱廷省, 唐海峰. 生物吸附法處理重金屬廢水的研究現狀及發展. 南方冶金學院學報, 2003, 24(4):65 doi: 10.3969/j.issn.2095-3046.2003.04.016

    Qiu T S, Tang H F. Present situation and development of biosorption treatment for wastewater containing heavy metals. <italic>J Southern Inst Metall</italic>, 2003, 24(4): 65 doi: 10.3969/j.issn.2095-3046.2003.04.016
    [16]
    陶美霞, 陳明, 楊泉, 等. GIS在土壤重金屬污染評價和安全預警的應用. 有色金屬科學與工程, 2017, 8(6):92

    Tao M X, Chen M, Yang Q, et al. Assessment in soil heavy metal pollution and safety pre-warning based on GIS. <italic>Nonferrous Met Sci Eng</italic>, 2017, 8(6): 92
    [17]
    鐘斌, 曾清全. 硫化沉淀法回收鎳鎂液中的鎳. 有色金屬科學與工程, 2015, 6(2):53

    Zhong B, Zeng Q Q. Recovering nickel from nickel-magnesium solution by sulfuration deposition method. <italic>Nonferrous Met Sci Eng</italic>, 2015, 6(2): 53
    [18]
    李寶磊, 邵春巖, 陳剛, 等. 我國含汞廢水處置技術現狀剖析與對策. 水處理技術, 2018, 44(11):1

    Li B L, Shao C Y, Chen G, et al. Status analysis and countermeasures of mercury containing wastewater treatment in China. <italic>Technol Water Treat</italic>, 2018, 44(11): 1
    [19]
    黎鄒江, 李棟, 許志鵬, 等. 旋流電積在有色冶金中的應用. 有色金屬科學與程, 2019, 10(5):1

    Li Z J, Li D, Xu Z P, et al. Application of cyclone electrowinning in non-ferrous metallurgy. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(5): 1
    [20]
    張小軍, 黃惠, 董勁, 等. 鋅電積過程中錳元素對鋁陰極的電化學行為影響. 工程科學學報, 2018, 40(7):800

    Zhang X J, Huang H, Dong J, et al. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning. <italic>Chin J Eng</italic>, 2018, 40(7): 800
    [21]
    何云龍, 徐瑞東, 何世偉, 等. 高鉍鉛陽極泥堿性氧化浸出渣熔煉-電解提鉍研究. 有色金屬科學與工程, 2019, 10(1):41

    He Y L, Xu R D, He S W, et al. Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis. <italic>Nonferrous Met Sci Eng</italic>, 2019, 10(1): 41
    [22]
    楊建廣, 李樹超, 李陵晨, 等. 廢銅包鐵針NH<sub>3</sub>-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>N(CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub>體系隔膜電解回收銅. 中國有色金屬學報, 2019, 29(8):1721 doi: 10.1016/S1003-6326(19)65079-X

    Yang J G, Li S C, Li L C, et al. Copper recovery from scrap copper coated iron needle via membrane electrolysis in NH<sub>3</sub>-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>N(CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub> system. <italic>Chin J Nonferrous Met</italic>, 2019, 29(8): 1721 doi: 10.1016/S1003-6326(19)65079-X
    [23]
    劉艷艷. 電解−電滲析聯合工藝實現含銅廢水資源化研究[學位論文]. 青島: 中國海洋大學, 2009

    Liu Y Y. Resources Recovery by the Combined Technology of Electrolysis and Electrodialysis from Copper Wastewater [Dissertation]. Qingdao: Ocean University of China, 2009.
    [24]
    Lai Y C, Lee W J, Huang K L, et al. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process. <italic>J Hazard Mater</italic>, 2008, 154(1-3): 588 doi: 10.1016/j.jhazmat.2007.10.061
    [25]
    許波. 玻利登-諾津克除汞技術及應用. 有色冶煉, 2000, 29(6):10

    Xu B. Boliden-Nojenk mercury-removal technology and its application. <italic>Nonferrous Smelting</italic>, 2000, 29(6): 10
    [26]
    唐冠華. 碘絡合—電解法除汞在硫酸生產中的應用. 有色冶金設計與研究, 2010, 31(3):23 doi: 10.3969/j.issn.1004-4345.2010.03.007

    Tang G H. Application of iodine complex-electrolytic method of removing mercury in sulfuric acid production. <italic>Nonferrous Met Eng Res</italic>, 2010, 31(3): 23 doi: 10.3969/j.issn.1004-4345.2010.03.007
    [27]
    侯鴻斌. 韶關冶煉廠汞回收工藝及生產現狀分析. 湖南有色金屬, 2001, 17(5):18 doi: 10.3969/j.issn.1003-5540.2001.05.008

    Hou H B. Mercury recovery process and analysis of mercury production status at Shaoguan smelter. <italic>Hunan Nonferrous Met</italic>, 2001, 17(5): 18 doi: 10.3969/j.issn.1003-5540.2001.05.008
    [28]
    Fornés J P, Bisang J M. Cathode depassivation using ultrasound for the production of colloidal sulphur by reduction of sulphur dioxide. <italic>Electrochim Acta</italic>, 2016, 213: 186 doi: 10.1016/j.electacta.2016.07.093
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1571) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频