Citation: | WU Zhong-xian, TAO Dong-ping. Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001 |
[1] |
崔榮國, 張艷飛, 郭娟, 等. 資源全球配置下的中國磷礦發展策略. 中國工程科學, 2019, 21(1):128
Cui R G, Zhang Y F, Guo J, et al. Development strategy of phosphate rock in China under global allocation of resources. Eng Sci, 2019, 21(1): 128
|
[2] |
張亮, 楊卉芃, 馮安生, 等. 全球磷礦資源開發利用現狀及市場分析. 礦產保護與利用, 2017(5):105
Zhang L, Yang H F, Feng A S, et al. Study on general situation and analysis of supply and demand of global phosphate resources. Conserv Utilization Miner Resour, 2017(5): 105
|
[3] |
Liu X, Li C X, Luo H H, et al. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int J Miner Process, 2017, 165: 20 doi: 10.1016/j.minpro.2017.06.004
|
[4] |
Yang H Y, Xiao J F, Xia Y, et al. Origin of the Ediacaran Weng’an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. J Asian Earth Sci, 2019, 182: 103931 doi: 10.1016/j.jseaes.2019.103931
|
[5] |
李維, 高輝, 羅英杰, 等. 國內外磷礦資源利用現狀、趨勢分析及對策建議. 中國礦業, 2015, 24(6):6 doi: 10.3969/j.issn.1004-4051.2015.06.003
Li W, Gao H, Luo Y J, et al. Status, trends and suggestions of phosphorus ore resources at home and abroad. China Min Mag, 2015, 24(6): 6 doi: 10.3969/j.issn.1004-4051.2015.06.003
|
[6] |
Abouzeid A Z M. Physical and thermal treatment of phosphate ores——an overview. Int J Miner Process, 2008, 85(4): 59 doi: 10.1016/j.minpro.2007.09.001
|
[7] |
趙鳳婷, 李若蘭, 劉麗芬, 等. 云南某碳酸鹽型膠磷礦雙反浮選脫硅工藝流程探討. 化工礦物與加工, 2019, 48(8):48
Zhao F T, Li R L, Liu L F, et al. Discussion on double-reverse flotation desilication process of carbonate collophanite in Yunnan. Ind Miner Process, 2019, 48(8): 48
|
[8] |
周澤富, 陳明祥, 盛先芳, 等. 放馬山中低品位膠磷礦雙反浮選試驗研究. 化工礦物與加工, 2016, 45(5):5
Zhou Z F, Chen M X, Sheng X F, et al. Double-reverse flotation test on medium and low grade collophanite from Fangmashan. Ind Miner Process, 2016, 45(5): 5
|
[9] |
周明安, 戴川, 劉麗芬, 等. 昆陽磷礦浮選廠浮選柱的改造. 現代礦業, 2016, 32(6):75 doi: 10.3969/j.issn.1674-6082.2016.06.028
Zhou M A, Dai C, Liu L F, et al. Transformation of flotation column in Kunyang phosphate flotation plant. Mod Min, 2016, 32(6): 75 doi: 10.3969/j.issn.1674-6082.2016.06.028
|
[10] |
劉安, 韓峰, 李志紅, 等. 納米氣泡在微細粒礦物浮選中的應用研究進展. 礦產保護與利用, 2018(3):81
Liu A, Han F, Li Z H, et al. Research progress of nano-bubble in micro-fine mineral flotation. Conserv Utilization Miner Resour, 2018(3): 81
|
[11] |
Hoang D H, Kupka N, Peuker U A, et al. Flotation study of fine grained carbonaceous sedimentary apatite ore-Challenges in process mineralogy and impact of hydrodynamics. Miner Eng, 2018, 121: 196 doi: 10.1016/j.mineng.2018.03.021
|
[12] |
桂夏輝, 邢耀文, 王波, 等. 煤泥浮選過程強化之一——國內外研究現狀篇. 選煤技術, 2017(1):93
Gui X H, Xing Y W, Wang B, et al. Fine coal flotation process intensification: part 1-a general overview of the state-of-the-art of the related research work conducted both within and abroad. Coal Prepar Technol, 2017(1): 93
|
[13] |
Hoang D H, Hassanzadeh A, Peuker U A, et al. Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation. Powder Technol, 2019, 345: 223 doi: 10.1016/j.powtec.2019.01.014
|
[14] |
楊穩權, 方世祥, 龐建濤, 等. 膠磷礦不同磨礦細度單體解離度測定及其浮選應用. 武漢工程大學學報, 2014, 36(4):31 doi: 10.3969/j.issn.1674-2869.2014.04.007
Yang W Q, Fang S X, Pang J T, et al. Determination of collophane monomer dissociation degree under different grinding fineness and its use in flotation. J Wuhan Inst Technol, 2014, 36(4): 31 doi: 10.3969/j.issn.1674-2869.2014.04.007
|
[15] |
Leistner T, Embrechts M, Lei?ner T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner Eng, 2016, 96-97: 94 doi: 10.1016/j.mineng.2016.06.020
|
[16] |
Leistner T, Peuker U A, Rudolph M. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Miner Eng, 2017, 109: 1 doi: 10.1016/j.mineng.2017.02.005
|
[17] |
Luttrell G H, Yoon R H. A hydrodynamic model for bubble-particle attachment. J Colloid Interface Sci, 1992, 154(1): 129 doi: 10.1016/0021-9797(92)90085-Z
|
[18] |
Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng, 2003, 2(1): 33
|
[19] |
方福躍, 王靜明. 云南某磷礦選礦廠旋流器溢流產品工藝礦物學研究. 價值工程, 2019, 38(8):162
Fang F Y, Wang J M. The mineralogy characteristics of overflow product from hydrocyclone in the Yunnan Phosphorite Mine. Value Eng, 2019, 38(8): 162
|
[20] |
李洪強, 張文, 鄭惠方, 等. 大峪口膠磷礦工藝礦物學研究. 化工礦物與加工, 2019, 48(12):43
Li H Q, Zhang W, Zheng H F, et al. Process mineralogy study of phosphate ore in Dayukou area. Ind Miner Process, 2019, 48(12): 43
|
[21] |
韓明. 工藝礦物學在礦物加工中的應用分析. 世界有色金屬, 2018(13):242 doi: 10.3969/j.issn.1002-5065.2018.13.134
Han M. Analysis of application of technological mineralogy in mineral processing. World Nonferrous Met, 2018(13): 242 doi: 10.3969/j.issn.1002-5065.2018.13.134
|
[22] |
張覃, 何發鈺, 卯松, 等. 膠磷礦和白云石的嵌布特征及磨礦細度試驗. 化工礦物與加工, 2010, 39(12):8 doi: 10.3969/j.issn.1008-7524.2010.12.003
Zhang Q, He F Y, Mao S, et al. Dissemination characteristics and grinding fineness of collophanite and dolomite. Ind Miner Process, 2010, 39(12): 8 doi: 10.3969/j.issn.1008-7524.2010.12.003
|
[23] |
Lei?ner T, Hoang D H, Rudolph M, et al. A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling. Int J Miner Process, 2016, 156: 3 doi: 10.1016/j.minpro.2016.08.014
|
[24] |
de Medeiros A R S, Baltar C A M. Importance of collector chain length in flotation of fine particles. Miner Eng, 2018, 122: 179 doi: 10.1016/j.mineng.2018.03.008
|
[25] |
張琦, 唐學飛, 劉杰, 等. 鞍山式鐵礦重選精礦工藝礦物學研究. 金屬礦山, 2019(2):183
Zhang Q, Tang X F, Liu J, et al. Process mineralogy of gravity concentrate of Anshan iron mine. Met Mine, 2019(2): 183
|
[26] |
趙鳳婷, 周瓊波, 龐建濤, 等. 磷礦脫硅研究現狀概述. 磷肥與復肥, 2019, 34(6):33 doi: 10.3969/j.issn.1007-6220.2019.06.011
Zhao F T, Zhou Q B, Pang J T, et al. Summary of research status of desilication of collophane. Phosphate Compd Fertilizer, 2019, 34(6): 33 doi: 10.3969/j.issn.1007-6220.2019.06.011
|
[27] |
Vieira A M, Peres A E C. The effect of amine type, pH, and size range in the flotation of quartz. Miner Eng, 2007, 20(10): 1008 doi: 10.1016/j.mineng.2007.03.013
|
[28] |
于躍先, 馬力強, 張仲玲, 等. 煤泥浮選過程中的細泥夾帶與罩蓋機理. 煤炭學報, 2015, 40(3):652
Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652
|
[29] |
Yao J, Xue J W, Li D, et al. Effects of fine-coarse particles interaction on flotation separation and interaction energy calculation. Part Sci Technol, 2018, 36(1): 11 doi: 10.1080/02726351.2016.1205687
|
[30] |
Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8
|
[31] |
宋子翔, 韓繼康, 王偉之, 等. 浮選柱技術發展與應用現狀. 金屬礦山, 2019(6):20
Song Z X, Han J K, Wang W Z, et al. Development and application status of flotation column technology. Met Mine, 2019(6): 20
|
[32] |
Fan M M, Tao D, Honaker R, et al. Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis. Min Sci Technol (China)
|