<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
WU Zhong-xian, TAO Dong-ping. Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001
Citation: WU Zhong-xian, TAO Dong-ping. Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001

Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms

doi: 10.13374/j.issn2095-9389.2020.02.24.001
More Information
  • Corresponding author: E-mail: dptao@qq.com
  • Received Date: 2020-02-24
  • Publish Date: 2021-04-26
  • It is a global fact that the mineral ores degrade to the poor grade status and the various properties of ores are adversely altered such as fine dissemination and complex composition due to the continuous exploitation and utilization of phosphate rock resources. Consequently, separation of minerals has become a difficult and daunting task. The automatic mineral identification and characterization system (AMICS) is mostly used only for mineral characterization. There is no much research and literature on process mineralogy that integrates research parameters with flotation test results to quantitatively explore the mechanism of difficulties or problems faced during mineral separation. In this paper, to further explore and analyze the specific reasons for difficult problems faced while separating collophanite, a systematic in-depth mineralogical analysis based on the chemical analyses, X-ray diffraction, and AMICS has been performed on a refractory collophane flotation feed sample from Yunnan, China. The results show that the phosphorus in the sample mainly exists in the form of fluorapatite and also present in the gangue minerals, which are primarily dolomite and quartz. Fluorapatite has a fine dissemination particle size, which is in the range of 10–75 μm with a degree of mineral liberation 59.17%. Apart from existing in the form of liberated particles, fluorapatite is also present in dolomite and quartz as a composite particle and the mass fraction of composition in dolomite and quartz is found to be 26.23% and 9.92%, respectively. Further, dolomite and quartz relatively have a low degree of mineral liberation with the liberation degree of 46.82% and 39.10%, respectively. The closed-circuit flotation test was carried out with a rougher flotation to remove magnesium. Further a roughing and two stages of scavenging is performed which obtained the flotation performance of concentrate P2O5 grade of 29.75%, P2O5 recovery of 81.95%, and SiO2 grade of 12.63%. When the results were studied together with the mineralogical analysis results, it is found that the fine dissemination particle size of collophanite, the poor degree of mineral liberation, and the serious slime generation are the main causes for not able to achieving a better performance in separation of minerals.

     

  • loading
  • [1]
    崔榮國, 張艷飛, 郭娟, 等. 資源全球配置下的中國磷礦發展策略. 中國工程科學, 2019, 21(1):128

    Cui R G, Zhang Y F, Guo J, et al. Development strategy of phosphate rock in China under global allocation of resources. Eng Sci, 2019, 21(1): 128
    [2]
    張亮, 楊卉芃, 馮安生, 等. 全球磷礦資源開發利用現狀及市場分析. 礦產保護與利用, 2017(5):105

    Zhang L, Yang H F, Feng A S, et al. Study on general situation and analysis of supply and demand of global phosphate resources. Conserv Utilization Miner Resour, 2017(5): 105
    [3]
    Liu X, Li C X, Luo H H, et al. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int J Miner Process, 2017, 165: 20 doi: 10.1016/j.minpro.2017.06.004
    [4]
    Yang H Y, Xiao J F, Xia Y, et al. Origin of the Ediacaran Weng’an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. J Asian Earth Sci, 2019, 182: 103931 doi: 10.1016/j.jseaes.2019.103931
    [5]
    李維, 高輝, 羅英杰, 等. 國內外磷礦資源利用現狀、趨勢分析及對策建議. 中國礦業, 2015, 24(6):6 doi: 10.3969/j.issn.1004-4051.2015.06.003

    Li W, Gao H, Luo Y J, et al. Status, trends and suggestions of phosphorus ore resources at home and abroad. China Min Mag, 2015, 24(6): 6 doi: 10.3969/j.issn.1004-4051.2015.06.003
    [6]
    Abouzeid A Z M. Physical and thermal treatment of phosphate ores——an overview. Int J Miner Process, 2008, 85(4): 59 doi: 10.1016/j.minpro.2007.09.001
    [7]
    趙鳳婷, 李若蘭, 劉麗芬, 等. 云南某碳酸鹽型膠磷礦雙反浮選脫硅工藝流程探討. 化工礦物與加工, 2019, 48(8):48

    Zhao F T, Li R L, Liu L F, et al. Discussion on double-reverse flotation desilication process of carbonate collophanite in Yunnan. Ind Miner Process, 2019, 48(8): 48
    [8]
    周澤富, 陳明祥, 盛先芳, 等. 放馬山中低品位膠磷礦雙反浮選試驗研究. 化工礦物與加工, 2016, 45(5):5

    Zhou Z F, Chen M X, Sheng X F, et al. Double-reverse flotation test on medium and low grade collophanite from Fangmashan. Ind Miner Process, 2016, 45(5): 5
    [9]
    周明安, 戴川, 劉麗芬, 等. 昆陽磷礦浮選廠浮選柱的改造. 現代礦業, 2016, 32(6):75 doi: 10.3969/j.issn.1674-6082.2016.06.028

    Zhou M A, Dai C, Liu L F, et al. Transformation of flotation column in Kunyang phosphate flotation plant. Mod Min, 2016, 32(6): 75 doi: 10.3969/j.issn.1674-6082.2016.06.028
    [10]
    劉安, 韓峰, 李志紅, 等. 納米氣泡在微細粒礦物浮選中的應用研究進展. 礦產保護與利用, 2018(3):81

    Liu A, Han F, Li Z H, et al. Research progress of nano-bubble in micro-fine mineral flotation. Conserv Utilization Miner Resour, 2018(3): 81
    [11]
    Hoang D H, Kupka N, Peuker U A, et al. Flotation study of fine grained carbonaceous sedimentary apatite ore-Challenges in process mineralogy and impact of hydrodynamics. Miner Eng, 2018, 121: 196 doi: 10.1016/j.mineng.2018.03.021
    [12]
    桂夏輝, 邢耀文, 王波, 等. 煤泥浮選過程強化之一——國內外研究現狀篇. 選煤技術, 2017(1):93

    Gui X H, Xing Y W, Wang B, et al. Fine coal flotation process intensification: part 1-a general overview of the state-of-the-art of the related research work conducted both within and abroad. Coal Prepar Technol, 2017(1): 93
    [13]
    Hoang D H, Hassanzadeh A, Peuker U A, et al. Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation. Powder Technol, 2019, 345: 223 doi: 10.1016/j.powtec.2019.01.014
    [14]
    楊穩權, 方世祥, 龐建濤, 等. 膠磷礦不同磨礦細度單體解離度測定及其浮選應用. 武漢工程大學學報, 2014, 36(4):31 doi: 10.3969/j.issn.1674-2869.2014.04.007

    Yang W Q, Fang S X, Pang J T, et al. Determination of collophane monomer dissociation degree under different grinding fineness and its use in flotation. J Wuhan Inst Technol, 2014, 36(4): 31 doi: 10.3969/j.issn.1674-2869.2014.04.007
    [15]
    Leistner T, Embrechts M, Lei?ner T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner Eng, 2016, 96-97: 94 doi: 10.1016/j.mineng.2016.06.020
    [16]
    Leistner T, Peuker U A, Rudolph M. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Miner Eng, 2017, 109: 1 doi: 10.1016/j.mineng.2017.02.005
    [17]
    Luttrell G H, Yoon R H. A hydrodynamic model for bubble-particle attachment. J Colloid Interface Sci, 1992, 154(1): 129 doi: 10.1016/0021-9797(92)90085-Z
    [18]
    Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng, 2003, 2(1): 33
    [19]
    方福躍, 王靜明. 云南某磷礦選礦廠旋流器溢流產品工藝礦物學研究. 價值工程, 2019, 38(8):162

    Fang F Y, Wang J M. The mineralogy characteristics of overflow product from hydrocyclone in the Yunnan Phosphorite Mine. Value Eng, 2019, 38(8): 162
    [20]
    李洪強, 張文, 鄭惠方, 等. 大峪口膠磷礦工藝礦物學研究. 化工礦物與加工, 2019, 48(12):43

    Li H Q, Zhang W, Zheng H F, et al. Process mineralogy study of phosphate ore in Dayukou area. Ind Miner Process, 2019, 48(12): 43
    [21]
    韓明. 工藝礦物學在礦物加工中的應用分析. 世界有色金屬, 2018(13):242 doi: 10.3969/j.issn.1002-5065.2018.13.134

    Han M. Analysis of application of technological mineralogy in mineral processing. World Nonferrous Met, 2018(13): 242 doi: 10.3969/j.issn.1002-5065.2018.13.134
    [22]
    張覃, 何發鈺, 卯松, 等. 膠磷礦和白云石的嵌布特征及磨礦細度試驗. 化工礦物與加工, 2010, 39(12):8 doi: 10.3969/j.issn.1008-7524.2010.12.003

    Zhang Q, He F Y, Mao S, et al. Dissemination characteristics and grinding fineness of collophanite and dolomite. Ind Miner Process, 2010, 39(12): 8 doi: 10.3969/j.issn.1008-7524.2010.12.003
    [23]
    Lei?ner T, Hoang D H, Rudolph M, et al. A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling. Int J Miner Process, 2016, 156: 3 doi: 10.1016/j.minpro.2016.08.014
    [24]
    de Medeiros A R S, Baltar C A M. Importance of collector chain length in flotation of fine particles. Miner Eng, 2018, 122: 179 doi: 10.1016/j.mineng.2018.03.008
    [25]
    張琦, 唐學飛, 劉杰, 等. 鞍山式鐵礦重選精礦工藝礦物學研究. 金屬礦山, 2019(2):183

    Zhang Q, Tang X F, Liu J, et al. Process mineralogy of gravity concentrate of Anshan iron mine. Met Mine, 2019(2): 183
    [26]
    趙鳳婷, 周瓊波, 龐建濤, 等. 磷礦脫硅研究現狀概述. 磷肥與復肥, 2019, 34(6):33 doi: 10.3969/j.issn.1007-6220.2019.06.011

    Zhao F T, Zhou Q B, Pang J T, et al. Summary of research status of desilication of collophane. Phosphate Compd Fertilizer, 2019, 34(6): 33 doi: 10.3969/j.issn.1007-6220.2019.06.011
    [27]
    Vieira A M, Peres A E C. The effect of amine type, pH, and size range in the flotation of quartz. Miner Eng, 2007, 20(10): 1008 doi: 10.1016/j.mineng.2007.03.013
    [28]
    于躍先, 馬力強, 張仲玲, 等. 煤泥浮選過程中的細泥夾帶與罩蓋機理. 煤炭學報, 2015, 40(3):652

    Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652
    [29]
    Yao J, Xue J W, Li D, et al. Effects of fine-coarse particles interaction on flotation separation and interaction energy calculation. Part Sci Technol, 2018, 36(1): 11 doi: 10.1080/02726351.2016.1205687
    [30]
    Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8
    [31]
    宋子翔, 韓繼康, 王偉之, 等. 浮選柱技術發展與應用現狀. 金屬礦山, 2019(6):20

    Song Z X, Han J K, Wang W Z, et al. Development and application status of flotation column technology. Met Mine, 2019(6): 20
    [32]
    Fan M M, Tao D, Honaker R, et al. Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis. Min Sci Technol (China), 2010, 20(2): 159 doi: 10.1016/S1674-5264(09)60179-4
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views (3402) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频