Citation: | CAO Shi-yao, WU Qiu-chi, YAN Xiao-qin, JI Zhen, CAO Lin. Synthesis and characterization of nano-chambersite[J]. Chinese Journal of Engineering, 2020, 42(7): 869-874. doi: 10.13374/j.issn2095-9389.2020.02.19.001 |
[1] |
別洛夫В Ф, 毛俊明. 用原子核γ射線共振吸收法研究鐵電體方硼石族Mn3B7O13Cl. 地質地球化學, 1980(9):72
Вeлов В Ф, Mao J M. Study on the chambersite Mn3B7O13Cl with nucleon γ ray resonance absorption. Geol Geochem, 1980(9): 72
|
[2] |
曾貽善. 錳方硼石的合成及其地球化學意義. 地質學報, 1983(4):401
Zen Y S. Synthesis of chambersite and its geochemical implication. Acta Geologica Sinica, 1983(4): 401
|
[3] |
柏慧凝, 紀箴, 曹林, 等. 錳方硼石結構與性能的研究進展. 粉末冶金技術, 2018, 36(1):73
Bai H N, Ji Z, Cao L, et al. Research progress on structure and properties of chambersite. Powder Metall Technol, 2018, 36(1): 73
|
[4] |
張然, 許虹, 李梅梅. 稀有礦物天津薊縣錳方硼石振動光譜特征研究. 巖礦測試, 2018, 37(2):139
Zhang R, Xu H, Li M M. Vibrational spectroscopy characteristics of rare mineral chambersite in jixian of Tianjin, China. Rock Mineral Anal, 2018, 37(2): 139
|
[5] |
Ci Z P, Zhu G, Que M D, et al. Photoluminescence properties of Sr10(PO4)5.5(BO4)0.5BO2: Re3+ (Re=Eu, Dy Sm) phosphors for white light-emitting diodes. J Aust Ceram Soc, 2013, 49(1): 58
|
[6] |
梁棟, 曹林, 賈成廠. 納米錳方硼石的制備及其電磁特性. 粉末冶金技術, 2015, 33(2):111 doi: 10.3969/j.issn.1001-3784.2015.02.006
Liang D, Cao L, Jia C C. Preparation and electromagnetic properties of Chambersite nano-powders. Powder Metall Technol, 2015, 33(2): 111 doi: 10.3969/j.issn.1001-3784.2015.02.006
|
[7] |
Wu H P, Pan S L, Poeppelmeier K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133(20): 7786 doi: 10.1021/ja111083x
|
[8] |
Bums P C, Grice J D, Hawthorne F C. Borate minerals; I, Polyhedral clusters and fundamental building blocks. Can Mineralogist, 1995, 33(5): 1131
|
[9] |
Bachmann V, Ronda C, Oeckler O, et al. Color point tuning for (Sr, Ca, Ba) Si2O2N2: Eu2+ for white light LEDs. Chem Mater, 2009, 21(2): 316 doi: 10.1021/cm802394w
|
[10] |
Takahashi K, Hirosaki N, Xie R J, et al. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in white light-emitting diode. Appl Phys Lett, 2007, 91(9): 091923 doi: 10.1063/1.2779093
|
[11] |
He H, Fu R L, Zhang X L, et al. Photoluminescence spectra tuning of Eu2+ activated orthosilicate phosphors used for white light emitting diodes. J Mater Sci Mater Electron, 2009, 20(5): 433 doi: 10.1007/s10854-008-9747-5
|
[12] |
Kottaisamy M, Thiyagarajan P, Mishra J, et al. Color tuning of Y3Al5O12: Ce phosphor and their blend for white LEDs. Mater Res Bull, 2008, 43(7): 1657 doi: 10.1016/j.materresbull.2007.09.005
|
[13] |
Jang H S, Won Y H, Vaidyanathan S, et al. Emission band change of (Sr1-xMx)3SiO5: Eu2+ (M=Ca, Ba) phosphor for white light sources using blue/near-ultraviolet LEDs. J Electrochem Soc, 2009, 156(6): J138 doi: 10.1149/1.3106042
|
[14] |
Sakuma K, Hirosaki N, Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-SiAlON ceramic phosphors. J Luminescence, 2007, 126(2): 843 doi: 10.1016/j.jlumin.2006.12.006
|
[15] |
Matsuyama I, Yamashita N, Nakamura K. Photoluminescence of the SrS: Mn2+ phosphor and Pb2+-sensitized luminescence of the SrS: Pb2+, Mn2+ phosphor. J Phys Soc Jpn, 1989, 58(2): 741 doi: 10.1143/JPSJ.58.741
|
[16] |
Vink A P, de Bruin M A, Roke S, et al. Luminescence of exchange coupled pairs of transition metal ions. J Electrochem Soc, 2001, 148(7): E313 doi: 10.1149/1.1375169
|
[17] |
Yamashita N, Maekawa S, Nakamura K. Influence of paired Mn2+ centers on the luminescence spectra of CaS: Mn2+. Jpn J Appl Phys, 1990, 29(9): 1729
|
[18] |
Barthou C, Benoit J, Benalloul P, et al. Mn2+ concentration effect on the optical properties of Zn2SiO4: Mn phosphors. J Electrochem Soc, 1994, 141(2): 524 doi: 10.1149/1.2054759
|
[19] |
Ronda C R, Amrein T. Evidence for exchange-induced luminescence in Zn2SiO4: Mn. J Luminescence, 1996, 69(5-6): 245 doi: 10.1016/S0022-2313(96)00103-2
|
[20] |
Kamran M A, Zhang Y Y, Liu R B, et al. A model on the Mn2+ luminescence band red shift with Mn(Ⅱ) doping and aggregation within CdS: Mn microwires. Chin Phys Lett, 2014, 31(6): 067802 doi: 10.1088/0256-307X/31/6/067802
|
[21] |
Zhang X W, Hu Q, Lin J Y, et al. Efficient and stable deep blue polymer light-emitting devices based on β-phase poly(9,9-dioctylfluorene). Appl Phys Lett, 2013, 103(15): 153301 doi: 10.1063/1.4824766
|
[22] |
Lojpur V, Nikoli? M G, Jovanovi? D, et al. Luminescence thermometry with Zn2SiO4: Mn2+ powder. Appl Phys Lett, 2013, 103(14): 141912 doi: 10.1063/1.4824208
|
[23] |
Gao W R, Wang X M, Xu W Q, et al. Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Mater Sci Eng C, 2014, 42: 333 doi: 10.1016/j.msec.2014.05.020
|
[24] |
Yuan J P, Guo W W, Wang E K. Oligonucleotide stabilized silver nanoclusters as fluorescence probe for drug–DNA interaction investigation. Anal Chim Acta, 2011, 706(2): 338 doi: 10.1016/j.aca.2011.08.043
|
[25] |
Tian Y, Cao Y Y, Pang F, et al. Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Adv, 2014, 4(81): 43204 doi: 10.1039/C4RA06089J
|
[26] |
Guo W W, Yuan J P, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun, 2009(23): 3395 doi: 10.1039/b821518a
|
[27] |
Dhanya S, Saumya V, Rao T P. Synthesis of silver nanoclusters, characterization and application to trace level sensing of nitrate in aqueous media. Electrochim Acta, 2013, 102: 299 doi: 10.1016/j.electacta.2013.04.017
|