<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
WAN Fa-rong. Clusters of point defects and one-dimensional motion of clusters during irradiation damage in materials[J]. Chinese Journal of Engineering, 2020, 42(12): 1535-1541. doi: 10.13374/j.issn2095-9389.2020.02.05.001
Citation: WAN Fa-rong. Clusters of point defects and one-dimensional motion of clusters during irradiation damage in materials[J]. Chinese Journal of Engineering, 2020, 42(12): 1535-1541. doi: 10.13374/j.issn2095-9389.2020.02.05.001

Clusters of point defects and one-dimensional motion of clusters during irradiation damage in materials

doi: 10.13374/j.issn2095-9389.2020.02.05.001
More Information
  • Irradiation damage in materials for nuclear reactors, particularly for fusion reactors, is a serious problem. For example, the pressure vessel in a fission power plant becomes brittle after exposure to neutron irradiation for many years. In the case of fusion reactors, in addition to the increase in ductile-to-brittle transition temperature, irradiation-induced swelling occurs in structural materials that need to tolerate high-dose irradiation of several hundreds of displacements per atom (dpa). The irradiation of particles (such as neutrons, ions, and electrons) with high energy introduces a large number of point defects, i.e., self-interstitial atoms and vacancies, into materials. Such point defects aggregate together to form self-interstitial atom clusters as interstitial loop and vacancy clusters as void, stacking fault tetrahedra, or vacancy loop. Then, these clusters affect the microstructure and properties of materials. Moreover, these clusters play a more important role than individual point defects during the irradiation damage process. Even after research for decades, many questions about clusters remain unanswered partially because of the difficulties in irradiation test and cluster observation. This review paper explained the structures of clusters and the effect of clusters on irradiation damage in materials. As a unique research of this author’s group, the formation of vacancy-type dislocation loops with sizes of up to 100 nm in iron was introduced, including the effect of hydrogen and its isotope and the effect of alloy elements on the formation of vacancy-type dislocation loops. There are two different kinds of vacancy-type dislocation loops, i.e., those having a Burgers vector of b =<100> and those having a Burgers vector of b =1/2<111>. The density of the first type is approximately one order of magnitude higher than that of the second type. The one-dimensional motion of self-interstitial atom clusters and the research activities in this field were also discussed in detail, and the one-dimensional motion would be a key factor effecting the irradiation damage of high entropy alloys.

     

  • loading
  • [1]
    Was G S. Fundamentals of Radiation Materials Science-Metals and Alloys. 2nd Ed. New York: Springer Science+Business Media, 2017
    [2]
    Ishino S. Irradiation Damage. Tokyo: University of Tokyo Press, 1979
    [3]
    萬發榮. 金屬材料的輻照損傷. 北京: 科學出版社, 1993

    Wan F R. Irradiation Damage in Metals. Beijing: Science Press, 1993
    [4]
    郭立平, 羅鳳鳳, 于雁霞. 核材料輻照位錯環. 北京: 國防工業出版社, 2017

    Guo L P, Luo F F, Yu Y X. Dislocation Loops in Irradiated Nuclear Materials. Beijing: National Defense Industry Press, 2017
    [5]
    Nordlund K. Historical review of computer simulation of radiation effects in materials. J Nucl Mater, 2019, 520: 273 doi: 10.1016/j.jnucmat.2019.04.028
    [6]
    Ipatova I, Wady P T, Shubeita S M, et al. Radiation-induced void formation and ordering in Ta-W alloys. J Nucl Mater, 2017, 495: 343 doi: 10.1016/j.jnucmat.2017.08.029
    [7]
    Zinkle S J, Snead L L. Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations. Scripta Mater, 2018, 143: 154 doi: 10.1016/j.scriptamat.2017.06.041
    [8]
    Saka H. Dislocation in Crystals. Tokyo: Muruzen Press, 2015
    [9]
    Schibli R, Sch?ublin R. On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels–a literature review. J Nucl Mater, 2013, 442: S761 doi: 10.1016/j.jnucmat.2013.05.077
    [10]
    Loretto M H, Phillips P J, Mills M J. Stacking fault tetrahedra in metals. Scripta Mater, 2015, 94: 1 doi: 10.1016/j.scriptamat.2014.07.020
    [11]
    Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: damage production and microstructural evolution. Acta Mater, 2016, 112: 105 doi: 10.1016/j.actamat.2016.03.051
    [12]
    黃依娜, 萬發榮, 焦治杰. 利用透射電鏡襯度像變化判定位錯環類型及注氫純鐵中形成的位錯環分析. 物理學報, 2011, 60(3):036802-1 doi: 10.7498/aps.60.036802

    Huang Y N, Wan F R, Jiao Z J. The type identification of dislocation loops by TEM and the loop formation in pure Fe implanted with H+. Acta Phys Sin, 2011, 60(3): 036802-1 doi: 10.7498/aps.60.036802
    [13]
    Du Y F, Cui L J, Han W T, et al. Formation of vacancy-type dislocation loops in hydrogen-ion-implanted Fe–Cr alloy. Acta Metall Sin Engl Lett, 2019, 32(5): 566 doi: 10.1007/s40195-018-0807-4
    [14]
    Liu P P, Zhu Y M, Zhao M Z, et al. The effect of isotope on the dynamic behavior of <100> vacancy-type dislocation loop in deuterium-implanted Fe. Fusion Eng Des, 2015, 95: 20 doi: 10.1016/j.fusengdes.2015.04.017
    [15]
    姜少寧, 萬發榮, 龍毅, 等. 氦、氘對純鐵輻照缺陷的影響. 物理學報, 2013, 62(16):166801-1 doi: 10.7498/aps.62.166801

    Jiang S N, Wan F R, Long Y, et al. Effects of helium and deuterium on irradiation damage in pure iron. Acta Phys Sin, 2013, 62(16): 166801-1 doi: 10.7498/aps.62.166801
    [16]
    Huang Y N, Wan F R, Xiao X, et al. The effect of isotope on the interaction between hydrogen and irradiation defect in pure iron. Fusion Eng Des, 2010, 85(10-12): 2203 doi: 10.1016/j.fusengdes.2010.08.030
    [17]
    姜少寧, 萬發榮, 龍毅, 等. 同位素效應對鐵中輻照損傷的影響. 功能材料, 2013, 44(2):262 doi: 10.3969/j.issn.1001-9731.2013.02.025

    Jiang S N, Wan F R, Long Y, et al. Effect of isotope on irradiation damage in pure iron. J Funct Mater, 2013, 44(2): 262 doi: 10.3969/j.issn.1001-9731.2013.02.025
    [18]
    Wan F R, Zhan Q, Long Y, et al. The behavior of vacancy-type dislocation loops under electron irradiation in iron. J Nucl Mater, 2014, 455(1-3): 253 doi: 10.1016/j.jnucmat.2014.05.048
    [19]
    Konobeev Y V, Dvoriashin A M, Porollo S I, et al. Swelling and microstructure of pure Fe and Fe–Cr alloys after neutron irradiation to ~26 dpa at 400 ℃. J Nucl Mater, 2006, 355(1-3): 124 doi: 10.1016/j.jnucmat.2006.04.011
    [20]
    Lavrentiev M Y, Nguyen-Manh D, Dudarev S L. Chromium-vacancy clusters in dilute bcc Fe–Cr alloys: an ab initio study. J Nucl Mater, 2018, 499: 613 doi: 10.1016/j.jnucmat.2017.10.038
    [21]
    Yao Z, Hernandez-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: damage evolution in thin-foils at lower doses. Philos Mag, 2008, 88(21): 2851 doi: 10.1080/14786430802380469
    [22]
    張高偉, 萬發榮, 姜少寧, 等. 高溫注氫對釩合金微觀結構的影響. 工程科學學報, 2016, 38(3):385

    Zhang G W, Wan F R, Jiang S N, et al. Effect of hydrogen implantation at high temperature on the microstructural evolution of vanadium alloys. Chin J Eng, 2016, 38(3): 385
    [23]
    崔麗娟, 高進, 杜玉峰, 等. 氫離子輻照純釩中形成的位錯環. 物理學報, 2016, 65(6):066102-1 doi: 10.7498/aps.65.066102

    Cui L J, Gao J, Du Y F, et al. Characterization of dislocation loops in hydrogen-ion irradiated vanadium. Acta Phys Sin, 2016, 65(6): 066102-1 doi: 10.7498/aps.65.066102
    [24]
    Wirth B D. How does radiation damage materials. Science, 2007, 318(5852): 923 doi: 10.1126/science.1150394
    [25]
    Ishino S, Kuramoto E, Soneda N. Radiation damage on fusion reactor materials 3. displacement of atoms and radiation induced defects. J Plasma Fusion Res, 2008, 84(5): 258
    [26]
    Arakawa K, Ono K, Isshiki M, et al. Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science, 2007, 318(5852): 956 doi: 10.1126/science.1145386
    [27]
    Derlet P M, Gilbert M R, Dudarev S L. Simulating dislocation loop internal dynamics and collective diffusion using stochastic differential equations. Phys Rev B, 2011, 84(13): 134109 doi: 10.1103/PhysRevB.84.134109
    [28]
    Li Y, Boleininger M, Robertson C, et al. Diffusion and interaction of prismatic dislocation loops simulated by stochastic discrete dislocation dynamics. Phys Rev Mater, 2019, 3(7): 073805 doi: 10.1103/PhysRevMaterials.3.073805
    [29]
    Kuramoto E. Computer simulation of fundamental behaviors of interstitial clusters in Fe and Ni. J Nucl Mater, 2000, 276(1-3): 143 doi: 10.1016/S0022-3115(99)00174-9
    [30]
    Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun, 2016, 7: 13564 doi: 10.1038/ncomms13564
    [31]
    Lu C Y, Yang T N, Niu L L, et al. Interstitial migration behavior and defect in ion irradiated pure nickel and Ni?xFe binary alloys. J Nucl Mater, 2018, 509: 237 doi: 10.1016/j.jnucmat.2018.07.006
    [32]
    Shi S, Bei H B, Robertson I M. Impact of alloy composition on one-dimensional glide of small dislocation loops in concentrated solid solution alloys. Mater Sci Eng A, 2017, 700: 617 doi: 10.1016/j.msea.2017.05.049
    [33]
    Amino T, Arakawa K, Mori H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy. Sci Rep, 2016, 6: 26099 doi: 10.1038/srep26099
    [34]
    Satoh Y, Matsui H, Hamaoka T. Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation. Phys Rev B, 2008, 77(9): 094135 doi: 10.1103/PhysRevB.77.094135
    [35]
    Hamaoka T, Satoh Y, Matsui H. One-dimensional motion of interstitial clusters in iron-based binary alloys observed using a high-voltage electron microscope. J Nucl Mater, 2013, 433(11-3): 180
    [36]
    Hayashi T, Fukumuto K, Matsui H. In situ observation of glide motions of SIA-type loops in vanadium and V–5Ti under HVEM irradiation. J Nucl Mater, 2002, 307-311: 993 doi: 10.1016/S0022-3115(02)01105-4
    [37]
    Satoh Y, Abe Y, Abe H, et al. Vacancy effects on one-dimensional migration of interstitial clusters in iron under electron irradiation at low temperatures. Philos Mag, 2016, 96: 2219 doi: 10.1080/14786435.2016.1194533
    [38]
    Williams D B, Carter C B. Transmission Electron Microscopy. 2nd Ed. New York: Springer, 2009
    [39]
    李杰, 高進, 萬發榮. 電子束輻照下的注氘鋁的結構變化. 物理學報, 2016, 65(2):026102-1 doi: 10.7498/aps.65.026102

    Li J, Gao J, Wan F R. The change of microstructure in deuteron-implanted aluminum under electron irradiation. Acta Phys Sin, 2016, 65(2): 026102-1 doi: 10.7498/aps.65.026102
    [40]
    Huang M J, Li Y P, Ran G, et al. Cr coated Zr-4 alloy prepared by electroplating and its in-situ He+ irradiation behavior. J Nucl Mater, 2020, 538: 152240 doi: 10.1016/j.jnucmat.2020.152240
    [41]
    Matsukawa Y, Zinkle S J. One-dimensional fast migration of vacancy clusters in metals. Science, 2007, 318(5852): 959 doi: 10.1126/science.1148336
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(2)

    Article views (2811) PDF downloads(223) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频