<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
Citation: GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002

Effect of sand-mold material and extrusion forming process on sand-mold surface properties

doi: 10.13374/j.issn2095-9389.2020.01.15.002
More Information
  • Corresponding author: E-mail: shanzd@cam.com.cn
  • Received Date: 2020-01-15
  • Publish Date: 2021-02-26
  • Considering the digital flexible extrusion sand mold as the research object, the surface quality of sand mold was studied by designing a single-factor experiment, and then the optimal parameter for the high-precision flexible forming of sand mold was obtained. The results show that there are differences in surface properties between the outside and inside of the sand mold, and the different types of sand mold had different surface properties. The angle coefficient of sand has a great influence on the sand mold surface properties. With the increase in the extrusion force, the distance between sand grains decreases and the parallel connection mode of sand grains increases. When the sand mold was cut, the number and extension depth of cracks of the sand mold were greatly reduced; thus, the sand mold surface properties increased. With the increase in the resin content, the coating thickness of sand grains increases, the bonding bridge of sand grains increases, the sand mold strength increases, the number of cracks of sand mold decreases, and the surface properties of sand mold increase. In this paper, a new method to obtain the surface quality of sand mold is provided, which can help popularize the precision forming technology of pattern-less casting. The method of sand-mold near-net forming with digital flexible extrusion makes the extrusion unit array pack form the sand-mold cavity. Moreover, in the digital precision forming technology without pattern casting, by filling the mold with molding sand, holding pressure, and hardening, the sand-mold near-net forming is obtained as a preform. This technology saves a lot of molding sand and reduces the amount of cut molding sand in the process of the digital precision forming technology without pattern casting. As the preliminary process of the sand-mold digital precision forming without pattern casting, the technology of sand-mold near-net forming with digital flexible extrusion effectively shortens the development cycle of castings. The basic research on sand mold efficiently achieves high-quality and near-net forming of sand molds with digital flexible extrusion. The research improves the digital level, eco-friendliness, and efficiency level of pattern-less casting technology.

     

  • loading
  • [1]
    Shan Z D, Qin S Y, Liu Q, et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. Int J Precision Eng Manuf, 2012, 13(7): 1095 doi: 10.1007/s12541-012-0143-y
    [2]
    郭莉軍, 單忠德, 劉麗敏. 數字化柔性擠壓成形工藝對砂型性能影響規律研究. 鑄造技術, 2020, 41(2):97

    Guo L J, Shan Z D, Liu L M. Effect of digital flexible extrusion process on the properties of sand mold. Foundry Technol, 2020, 41(2): 97
    [3]
    劉豐, 單忠德, 李柳, 等. 大型薄壁殼件無模鑄造技術研究. 鑄造技術, 2013, 34(10):1324

    Liu F, Shan Z D, Li L, et al. Research on patternless casting technologies for large thin-walled shell pieces. Foundry Technol, 2013, 34(10): 1324
    [4]
    Josan A, Bretotean C P, Ra?iu S. Critical analysis of the influence of the possibilities of establishing the moulding technology on obtaining the castings. IOP Conf Ser Mater Sci Eng, 2018, 294: 012038 doi: 10.1088/1757-899X/294/1/012038
    [5]
    Wen S F, Shen Q W, Wei Q S, et al. Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands. J Mater Process Technol, 2015, 225: 93
    [6]
    張帥, 單忠德, 顧兆現, 等. 數字化砂箱型砂填充路徑規劃及工藝試驗研究. 鑄造, 2016, 65(8):713 doi: 10.3969/j.issn.1001-4977.2016.08.001

    Zhang S, Shan Z D, Gu Z X, et al. Study on path planning and process test of molding sand filling sandbox digitally. Foundry, 2016, 65(8): 713 doi: 10.3969/j.issn.1001-4977.2016.08.001
    [7]
    Torielli R M, Abrahams R A, Smillie R W, et al. Using lean methodologies for economically and environmentally sustainable foundries. China Foundry, 2011, 8(1): 74
    [8]
    黃天佑. 鑄造手冊第4卷: 造型材料. 2版. 北京: 機械工業出版社, 2002

    Huang T Y. Casting Handbook Volume 4 Molding Materials. 2nd Ed. Beijing: Machinery Industry Press, 2002
    [9]
    Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resour Conserv Recycl, 2011, 55(11): 885 doi: 10.1016/j.resconrec.2011.05.001
    [10]
    Sun S H, Koizumi Y, Kurosu S, et al. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater, 2014, 64: 154 doi: 10.1016/j.actamat.2013.10.017
    [11]
    Snelling D, Li Q, Meisel N, et al. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv Eng Mater, 2015, 17(7): 923 doi: 10.1002/adem.201400524
    [12]
    Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J, 2007, 13(4): 196 doi: 10.1108/13552540710776142
    [13]
    Zocca A, Gomes C M, Bernardo E, et al. LAS glass–ceramic scaffolds by three-dimensional printing. J Eur Ceram Soc, 2013, 33(9): 1525 doi: 10.1016/j.jeurceramsoc.2012.12.012
    [14]
    Butscher A, Bohner M, Roth C, et al. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater, 2012, 8(1): 373 doi: 10.1016/j.actbio.2011.08.027
    [15]
    Almaghariz E S, Conner B P, Lenner L, et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores. Int J Metalcast, 2016, 10(3): 240 doi: 10.1007/s40962-016-0027-5
    [16]
    Li E Q, Xu Q, Sun J, et al. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle. Sens Actuators A, 2010, 163(1): 315 doi: 10.1016/j.sna.2010.07.014
    [17]
    Dobosz S M, Grabarczyk A, Major-Gabry? K, et al. Influence of quartz sand quality on bending strength and thermal deformation of moulding sands with synthetic binders. Arch Foundry Eng, 2015, 15(2): 9 doi: 10.1515/afe-2015-0028
    [18]
    Dong X L, Li X Y, Shan Z D, et al. Rapid manufacturing of sand molds by direct milling. Tsinghua Sci Technol, 2009, 14(Suppl 1): 212
    [19]
    Ayoola W A, Adeosun S O, Sanni O S, et al. Effect of casting mould on mechanical properties of 6063 aluminum alloy. J Eng Sci Technol, 2012, 7(1): 89
    [20]
    趙志剛, 仇圣桃, 朱榮. 水冷銅模與砂模鑄造 M2 鋼顯微組織對比. 工程科學學報, 2016, 38(6):787

    Zhao Z G, Qiu S T, Zhu R. Comparison between the microstructures of M2 steel cast by the water-cooled copper mould and the sand mould. Chin J Eng, 2016, 38(6): 787
    [21]
    謝祖錫, 向青春, 毛萍莉, 等. 兩種高緊實度砂型回彈的檢測與分析. 鑄造, 2004, 53(9):705 doi: 10.3321/j.issn:1001-4977.2004.09.007

    Xie Z X, Xiang Q C, Mao P L, et al. Comparison and analysis of the springback for twotypes of high compacted sand molds. Foundry, 2004, 53(9): 705 doi: 10.3321/j.issn:1001-4977.2004.09.007
    [22]
    Peyre P, Rouchausse Y, Defauchy D, et al. Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. J Mater Process Technol, 2015, 225: 326 doi: 10.1016/j.jmatprotec.2015.04.030
    [23]
    劉麗敏, 單忠德, 劉豐. 大型鑄鋁件鑄造工藝有限元分析與優化. 鑄造技術, 2012, 33(8):978

    Liu L M, Shan Z D, Liu F. FEM analysis and optimization on casting process for large aluminum castings. Foundry Technol, 2012, 33(8): 978
    [24]
    Cheng R, Wu X Y, Zheng J P. The optimization design study of selective laser sintering process parameters on the pro-coated sand mold. Appl Mech Mater, 2011, 55-57: 853 doi: 10.4028/www.scientific.net/AMM.55-57.853
    [25]
    Senthilkumaran K, Pandey P M, Rao P V M. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des, 2009, 30(8): 2946 doi: 10.1016/j.matdes.2009.01.009
    [26]
    Bernard S A, Balla V K, Bose S, et al. Direct laser processing of bulk lead zirconate titanate ceramics. Mater Sci Eng B, 2010, 172(1): 85 doi: 10.1016/j.mseb.2010.04.022
    [27]
    朱筠, 季敦生, 卜偉. 黏土濕型表面穩定劑的組成及制備工藝. 鑄造工程, 2009, 33(3):5 doi: 10.3969/j.issn.1673-3320.2009.03.002

    Zhu Y, Ji D S, Bo W. Composition and preparation of surface stabilizer for green sang mold. Foundry Eng, 2009, 33(3): 5 doi: 10.3969/j.issn.1673-3320.2009.03.002
    [28]
    李輝, 杜建華, 王浩旭, 等. 成型工藝對樹脂基摩擦材料及其摩擦學性能的影響. 工程科學學報, 2017, 39(8):1182

    Li H, Du J H, Wang H X, et al. Effect of molding process on tribological characteristics of friction materials based on resin. Chin J Eng, 2017, 39(8): 1182
    [29]
    孫其誠, 金峰, 王光謙, 等. 二維顆粒體系單軸壓縮形成的力鏈結構. 物理學報, 2010, 59(1):30 doi: 10.7498/aps.59.30

    Sun Q C, Jin F, Wang G Q, et al. Force chains in a uniaxially compressed static granular matter in 2D. Acta Phys Sin, 2010, 59(1): 30 doi: 10.7498/aps.59.30
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views (1694) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频