<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
GAO Zhi-gang, HE Yu-ting, MA Bin-lin, ZHANG Tian-yu. Evaluation method of initial fatigue quality of aircraft wing flange fastener holes[J]. Chinese Journal of Engineering, 2021, 43(3): 442-450. doi: 10.13374/j.issn2095-9389.2020.01.13.005
Citation: GAO Zhi-gang, HE Yu-ting, MA Bin-lin, ZHANG Tian-yu. Evaluation method of initial fatigue quality of aircraft wing flange fastener holes[J]. Chinese Journal of Engineering, 2021, 43(3): 442-450. doi: 10.13374/j.issn2095-9389.2020.01.13.005

Evaluation method of initial fatigue quality of aircraft wing flange fastener holes

doi: 10.13374/j.issn2095-9389.2020.01.13.005
More Information
  • On analyzing the details of kinetic links of parts and structures of aircrafts, one can find few bad links. But fastener hole is the weakest link where abnormal stress is produced and initiation of crack occurs. The initial fatigue quality of aircraft wing flange fastener is the key parameter, which affects the durability of aircraft structure. The initial fatigue quality of structural details is usually characterized by the equivalent initial defect size (EIFS) and the time to crack initiation (TTCI). To evaluate the initial fatigue quality of aircraft wing flange fastener hole details, this paper first carried out fatigue tests at high-, medium- and low-stress levels on the BXXX aluminum alloy fastener hole specimens generally used in aircraft wing flange structures, and obtained three groups of (a?t) datasets about crack length a and fatigue life t through fracture interpretation and back stepping. On this basis, the EIFS governing equation was used to evaluate the EIFS value of each specimen, and it is found out that there is no significant difference in equivalent initial flaw size under different stress levels; TTCI distribution of structural details is obtained, and the economic life of specified stress level under 95% confidence level of fastener hole structural details was predicted, and compared with the design life; a structural detail equivalent to initial flaw size model under different exceedance probability P was proposed. Based on the given 5% crack exceedance probability, the general EIFS distribution of structural details was evaluated. The comprehensive evaluation results were obtained through the above triple evaluation of the initial fatigue quality of the fastener hole details: the general EIFS distribution and the EIFS value of each test piece are less than the allowable value, and the economic life is greater than the allowable value, so the original fatigue quality of the details of the fastening holes of the aircraft flange meets the stringent requirements.

     

  • loading
  • [1]
    Chikmath L, Ramanath M N, Dattaguru B. Fatigue life benefits of cold worked holes in fastener joints. Procedia Struct Integr, 2019, 14: 922 doi: 10.1016/j.prostr.2019.07.072
    [2]
    Correia J A F O, Blasón S, De Jesus A M P, et al. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Eng Fail Anal, 2016, 69: 15 doi: 10.1016/j.engfailanal.2016.04.003
    [3]
    Zhao T L, Liu Z Y, Du C W, et al. Modeling for corrosion fatigue crack initiation life based on corrosion kinetics and equivalent initial flaw size theory. Corros Sci, 2018, 142: 277 doi: 10.1016/j.corsci.2018.07.031
    [4]
    中國航空研究院. 軍用飛機疲勞·損傷容限·耐久性設計手冊. 北京: 中國航空研究院出版社, 1994

    Chinese Aviation Institute. Military Aircraft Fatigue, Damage Tolerance and Durability Design Manual. Beijing: Chinese Aviation Institute Press, 1994
    [5]
    劉文珽, 鄭旻仲, 費斌軍. 概率斷裂力學與概率損傷容限/耐久性. 北京: 北京航空航天大學出版社, 1999

    Liu W T, Zheng M Z, Fei B J. Probability Fracture Mechanics and Probabilistic Damage Tolerance/Durability. Beijing: Beihang University Press, 1999
    [6]
    Fawaz S A. Equivalent initial flaw size testing and analysis of transport aircraft skin splices. Fatigue Fract Eng Mater Struct, 2003, 26(3): 279 doi: 10.1046/j.1460-2695.2003.00637.x
    [7]
    Makeev A, Nikishkov Y, Armanios E. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models. Int J Fatigue, 2007, 29(1): 141 doi: 10.1016/j.ijfatigue.2006.01.018
    [8]
    王志智, 王普選, 聶學洲. 一種緊固孔細節原始疲勞質量評定方法. 航空學報, 1998, 19(4):88

    Wang Z Z, Wang P X, Nie X Z. Evaluation approach to initial fatigue quality of fastener hole. Acta Aeron Astron Sin, 1998, 19(4): 88
    [9]
    張永濤. 某型飛機機翼盒段耐久性分析[學位論文]. 南京: 南京航空航天大學, 2008

    Zhang Y T. Durability Analysis of An Aircraft Wing Box[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008
    [10]
    Xiang Y B, Lu Z Z, Liu Y M. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: uniaxial loading. Int J Fatigue, 2010, 32(2): 341 doi: 10.1016/j.ijfatigue.2009.07.011
    [11]
    Nicolas A, Co N E C, Burns J T, et al. Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects. Eng Fracture Mech, 2019, 220: 106661 doi: 10.1016/j.engfracmech.2019.106661
    [12]
    Rudd J L. Application of the Equivalent Initial Quality Method AFFDL-TM-76-83-FBE. Dayton: Wright AFB, 1977
    [13]
    Rudd J L, Gray T D. Quantification of fastener-hole quality. J Aircraft, 1978, 15(3): 143 doi: 10.2514/3.58332
    [14]
    Yang J N. Statistical Estimation of Economic Life for Aircraft Structures. J Aircraft, 1980, 17(7): 528 doi: 10.2514/3.57935
    [15]
    Wang D Y. An Investigation of Initial Fatigue Quality: STPZ8860S. West Conshohochen: ASTM Special Technical Publication, 1982
    [16]
    航空航天部 AFFD 系統辦公室. 美國空軍耐久性手冊背景材料: 第Ⅷ卷. 西安: 航空航天部 AFFD 系統辦公室, 1989

    AFFD System Engineering Office of the Department of Aeronautics and Astronautics. The Background Information of USAF Durability Design Handbook: Vol.Ⅷ. Xi’an: AFFD System Engineering Office of the Department of Aeronautics and Astronautics, 1989
    [17]
    Moreira P M G P, de Matos P F P, de Castro P M S T. Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens. Theoret Appl Fract Mech, 2005, 43(1): 89 doi: 10.1016/j.tafmec.2004.12.005
    [18]
    Shahani A R, Kashani H M. Assessment of equivalent initial flaw size estimation methods in fatigue life prediction using compact tension specimen tests. Eng Fract Mech, 2013, 99: 48 doi: 10.1016/j.engfracmech.2013.01.007
    [19]
    Wu Y Z, Xu Y W, Guo X, et al. Fatigue life prediction based on equivalent initial flaw size for Al-Li alloy 2297 under spectrum loading. Int J Fatigue, 2017, 103: 39 doi: 10.1016/j.ijfatigue.2017.04.015
    [20]
    曹昌年, 王志智, 趙選民. 緊固孔原始疲勞質量評定及符合性檢查. 西北工業大學學報, 2000, 18(1):15 doi: 10.3969/j.issn.1000-2758.2000.01.004

    Cao C N, Wang Z Z, Zhao X M. Evaluation and coincidence check for initial fatigue quality of fastener hole. J Northwest Polytech Univ, 2000, 18(1): 15 doi: 10.3969/j.issn.1000-2758.2000.01.004
    [21]
    張勝, 何宇廷, 張騰, 等. 飛機典型連接結構原始疲勞質量評估. 機械強度, 2016, 38(3):480

    Zhang S, He Y T, Zhang T, et al. Assessment on initial fatigue quality of aircraft typical connected structure. J Mech Strength, 2016, 38(3): 480
    [22]
    周俊杰, 王生楠. 飛機機翼壁板緊固孔細節原始疲勞質量評估. 西北工業大學學報, 2018, 36(1):91 doi: 10.3969/j.issn.1000-2758.2018.01.013

    Zhou J J, Wang S N. Initial fatigue quality assessment for aircraft wing panel fastener hole. J Northwest Polytech Univ, 2018, 36(1): 91 doi: 10.3969/j.issn.1000-2758.2018.01.013
    [23]
    何宇廷, 張騰, 崔榮洪, 等. 飛機結構壽命控制原理與技術. 北京: 國防工業出版社, 2017

    He Y T, Zhang T, Cui R H, et al. Theory and Technology of Aircraft Structural Life Control. Beijing: National Defense Industry Press, 2017
    [24]
    Provan J W. Probabilistic Fracture Mechanics and Reliability. Leiden: Martinus Nijhoff Publishers, 1987
    [25]
    高鎮同. 疲勞應用統計學. 北京: 國防工業出版社, 1986

    Gao Z T. Fatigue Application Statistics. Beijing: National Defense Industry Press, 1986
    [26]
    陳振龍, 陳宜治, 龔小慶, 等. 概率論與數理統計. 杭州: 浙江工商大學出版社, 2016

    Chen Z L, Chen Y Z, Gong X Q, et al. Probability Theory and Mathematical Statistics. Hangzhou: Zhejiang Gongshang University Press, 2016
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views (2880) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频