<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
LIU Tian-qi, WANG Ning, ZHENG Qiu-yu, CAI Zhi-xin, DUAN Guo-sheng. Flame propagation characteristics of retardant superfine glass fiber wool in aircraft[J]. Chinese Journal of Engineering, 2020, 42(12): 1647-1652. doi: 10.13374/j.issn2095-9389.2019.12.29.002
Citation: LIU Tian-qi, WANG Ning, ZHENG Qiu-yu, CAI Zhi-xin, DUAN Guo-sheng. Flame propagation characteristics of retardant superfine glass fiber wool in aircraft[J]. Chinese Journal of Engineering, 2020, 42(12): 1647-1652. doi: 10.13374/j.issn2095-9389.2019.12.29.002

Flame propagation characteristics of retardant superfine glass fiber wool in aircraft

doi: 10.13374/j.issn2095-9389.2019.12.29.002
More Information
  • Corresponding author: E-mail: liutianqi613@163.com
  • Received Date: 2019-12-29
  • Publish Date: 2020-12-25
  • Thermal and sound insulation material in aircraft can ensure that the crew and passengers are in a relatively comfortable environment. To analyze the flame propagation characteristics of thermal and sound insulation superfine glass fiber wool, the flame propagation characteristics of glass fiber wool exposed to radiant heat and open flame were investigated using a flame propagation characteristic tester. Results show that, when the ignition time increases from 15 to 85 s, the maximum distance of forward flame spread along the Y-axis increases from 280 to 435 mm. Moreover, the flame spread rate initially decreases, subsequently increases, and finally decreases. According to the analysis, the flame propagation rate increases because the sample is cut during the preparation process so that local oxygen is supplemented to a certain extent. When the temperature of the radiant plate increases within the range of 700?820 ℃, the maximum distance of the flame spreading along the Y-axis was continuously increased from 280 to 390 mm, an increase of 110 mm, indicating that the increase in the temperature of the radiant plate has a significant positive effect on the spread of the flame. Furthermore, the growth rate of the flame that spreads the longest along the Y-axis decreases. By monitoring the real-time temperature inside the glass fiber wool at different positions during the combustion process, we determined that the temperature at the monitoring point close to the ignition source is generally high, and at the same time, the maximum temperature appears longer than the ignition time. The quantitative fitting curve of the furthest distance of forward flame spread along the Y-axis and the thickness of the glass fiber wool is obtained. The thicker the glass fiber wool is (i.e., from 12 to 48 mm), the more obvious the effect on preventing flame spread and diffusion. When the glass fiber wool is burned, more heat is propagated along the thickness direction of the inner layer, thereby reducing the flame heat propagation speed and spread distance along the Y-axis forward direction.

     

  • loading
  • [1]
    張和平. 飛機防火技術概論. 北京: 科學出版社, 2017

    Zhang H P. Introduction to Aircraft Fire Protection Technology. Beijing: Science Press, 2017
    [2]
    吳海華, 任超群, 王俊, 等. 結構型隔熱材料研究現狀及發展趨勢. 化工新型材料, 2020, 48(1):6

    Wu H H, Ren C Q, Wang J, et al. Research status and development trend of structural thermal insulation materials. New Chem Mater, 2020, 48(1): 6
    [3]
    吳大方, 林鷺勁, 吳文軍, 等. 1500 ℃極端高溫環境下高超聲速飛行器輕質隔熱材料熱/振聯合試驗. 航空學報, 2020, 41(7): 223612-1

    Wu D F, Lin L J, Wu W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500 ℃. Acta Aeron Astron Sin, 2020, 41(7): 223612-1
    [4]
    Li Y Y, Sun Y M, Qiu J L, et al. Moisture absorption characteristics and thermal insulation performance of thermal insulation materials for cold region tunnels. Constr Build Mater, 2020, 237: 117765 doi: 10.1016/j.conbuildmat.2019.117765
    [5]
    Li Y F, Sio W K, Tsai Y K. A compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature. Materials, 2020, 13(1): 26
    [6]
    Zangana S, Epaarachchi J, Ferdous W, et al. A novel hybridised composite sandwich core with glass, Kevlar and Zylon fibres – Investigation under low-velocity impact. Int J Impact Eng, 2020, 137: 103430 doi: 10.1016/j.ijimpeng.2019.103430
    [7]
    Stadler G, Primetzhofer A, Pinter G, et al. Investigation of fibre orientation and notch support of short glass fibre reinforced thermoplastics. Int J Fatigue, 2020, 131: 105284 doi: 10.1016/j.ijfatigue.2019.105284
    [8]
    Makhtar S N N M, Pauzi M Z M, Mahpoz N M, et al. Preparation, characterization and performance evaluation of supported zeolite on porous glass hollow fiber for desalination application. Arab J Chem, 2020, 13(1): 3429 doi: 10.1016/j.arabjc.2018.11.015
    [9]
    Cheon J, Lee M, Kim M. Study on the stab resistance mechanism and performance of the carbon, glass and aramid fiber reinforced polymer and hybrid composites. Compos Struct, 2020, 234: 111690 doi: 10.1016/j.compstruct.2019.111690
    [10]
    Wiprachtiger M, Haupt M, Heeren N, et al. A framework for sustainable and circular system design: development and application on thermal insulation materials. Resour Conserv Recycl, 2020, 154: 104631 doi: 10.1016/j.resconrec.2019.104631
    [11]
    Yang W, Liu J P, Wang Y Y, et al. Experimental study on the thermal conductivity of aerogel-enhanced insulating materials under various hygrothermal environments. Energy Build, 2020, 206: 109583 doi: 10.1016/j.enbuild.2019.109583
    [12]
    修忠信. 民用飛機系統安全性設計與評估技術概論. 2版. 上海: 上海交通大學出版社, 2018

    Xiu Z X. Introduction to Safety Design and Evaluation Technology of Civil Aircraft System. 2nd Ed. Shanghai: Shanghai Jiao Tong University Press, 2018
    [13]
    Huang C, Zhang Y. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method. Chin J Aeron, 2014, 27(4): 791 doi: 10.1016/j.cja.2014.03.007
    [14]
    任德鵬, 夏新林, 艾青. 飛機發動機冷氣道與隔熱層的耦合傳熱分析. 航空學報, 2005, 26(4):426 doi: 10.3321/j.issn:1000-6893.2005.04.009

    Ren D P, Xia X L, Ai Q. Analysis of coupled heat transfer in air cooling channel of aeroengine and thermal isolation layer. Acta Aeron Astron Sin, 2005, 26(4): 426 doi: 10.3321/j.issn:1000-6893.2005.04.009
    [15]
    Headley A J, Hileman M B, Robbins A S, et al. Thermal conductivity measurements and modeling of ceramic fiber insulation materials. Int J Heat Mass Transfer, 2019, 129: 1287 doi: 10.1016/j.ijheatmasstransfer.2018.10.060
    [16]
    Lee S C, Cunnington G R. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transfer, 2000, 14(2): 121 doi: 10.2514/2.6508
    [17]
    Zhao S Y, Zhang B M, Du S Y. Effects of contact resistance on heat transfer behaviors of fibrous insulation. Chin J Aeron, 2009, 22(5): 569 doi: 10.1016/S1000-9361(08)60143-0
    [18]
    Zhao S Y, Zhang B M, Du S Y. An inverse analysis to determine conductive and radiative properties of a fibrous medium. J Quant Spectrosc Radiat Transfer, 2009, 110(13): 1111 doi: 10.1016/j.jqsrt.2009.03.022
    [19]
    Zhao S Y, Zhang B M, He X D. Temperature and pressure dependent effective thermal conductivity of fibrous insulation. Int J Therm Sci, 2009, 48(2): 440 doi: 10.1016/j.ijthermalsci.2008.05.003
    [20]
    楊海龍, 胡子君, 孫陳誠, 等. 納米隔熱材料的孔隙結構特征與氣體熱傳輸特性. 工程科學學報, 2019, 41(6):788

    Yang H L, Hu Z J, Sun C C, et al. Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores. Chin J Eng, 2019, 41(6): 788
    [21]
    An W G, Sun J H, Liew K M, et al. Flammability and safety design of thermal insulation materials comprising PS foams and fire barrier materials. Mater Des, 2016, 99: 500 doi: 10.1016/j.matdes.2016.03.080
    [22]
    Huang X J, Sun J H, Ji J, et al. Flame spread over the surface of thermal insulation materials in different environments. Chin Sci Bull, 2011, 56(15): 1617 doi: 10.1007/s11434-010-4187-z
    [23]
    陳照峰, 吳操, 楊勇, 等. 航空級超細玻璃纖維棉氈的制備及隔音隔熱性能研究. 南京航空航天大學學報, 2016, 48(1):10

    Chen Z F, Wu C, Yang Y, et al. Preparation of super-fine aviation glass wool and its property study on sound and thermal insulation. J Nanjing Univ Aeron Astron, 2016, 48(1): 10
    [24]
    陳舟. 1~4 μm級Na2O–CaO–B2O3–SiO2超細離心噴吹玻璃棉關鍵制備技術與性能研究[學位論文]. 南京: 南京航空航天大學, 2016

    Chen Z. The Research on Key Fabrication Process and Properties of Na2O–CaO–B2O3–SiO2 Ultra-fine Glass Wool[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
    [25]
    中國民用航空局. CCAR-25中國民用航空規章運輸類飛機適航標準, 附錄F第Ⅵ部分: 隔熱隔音材料燃燒及火焰蔓延特性試驗設備. 北京: 中國民航出版社, 2011

    China Civil Aviation Administration. CCAR-25 China Civil Aviation Regulations Airworthiness Standards for Transport Aircraft, Appendix F, Part VI: Testing Equipment for Combustion and Flame Propagation Characteristics of Insulation and Sound Insulation. Beijing: China Civil Aviation Press, 2011
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (2587) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频