Citation: | HAN Yan-shen, ZHANG Jiang-shan, ZOU Lei-lei, ZENG Fan-zheng, GUAN Min, LIU Qing. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet[J]. Chinese Journal of Engineering, 2020, 42(6): 739-746. doi: 10.13374/j.issn2095-9389.2019.12.26.001 |
[1] |
張富強, 王新華. 連鑄板坯二冷區寬度方向不均勻冷卻的研究. 鋼鐵, 2006, 41(9):30 doi: 10.3321/j.issn:0449-749X.2006.09.007
Zhang F Q, Wang X H. Simulation of uneven cooling along the width of continuously cast slab in secondary cooling zone. Iron Steel, 2006, 41(9): 30 doi: 10.3321/j.issn:0449-749X.2006.09.007
|
[2] |
Assuncao C, Tavares R, Oliveira G. Improvement in secondary cooling of continuous casting of round billets through analysis of heat flux distribution. Ironmaking Steelmaking, 2015, 42(1): 1 doi: 10.1179/1743281214Y.0000000190
|
[3] |
Brimacombe J K, Sorimachi K. Crack formation in the continuous casting of steel. Metall Trans B, 1977, 8(2): 489 doi: 10.1007/BF02696937
|
[4] |
韓傳基, 蔡開科, 趙家貴, 等. 板坯連鑄二冷區凝固傳熱過程與控制. 北京科技大學學報, 1999, 21(6):523 doi: 10.3321/j.issn:1001-053X.1999.06.004
Han C J, Cai K K, Zhao J G, et al. Solidification heat transfer process and control for secondary cooling zone of slab casting. J Univ Sci Technol Beijing, 1999, 21(6): 523 doi: 10.3321/j.issn:1001-053X.1999.06.004
|
[5] |
閔義, 劉承軍, 王德永, 等. 37Mn5連鑄圓坯中心等軸晶率預測. 鋼鐵研究學報, 2011, 23(10):38
Min Y, Liu C J, Wang D Y, et al. Prediction of equiaxed crystal ratio of continuous casting round billet of 37Mn5 steel. J Iron Steel Res, 2011, 23(10): 38
|
[6] |
Zeng J, Chen W Q. Effect of secondary cooling conditions on solidification structure and central macrosegregation in continuously cast high-carbon rectangular billet. High Temp Mater Processes, 2015, 34(6): 577
|
[7] |
Dou K, Yang Z G, Liu Q, et al. Influence of secondary cooling mode on solidification structure and macro-segregation behavior for high-carbon continuous casting bloom. High Temp Mater Process, 2017, 36(7): 741 doi: 10.1515/htmp-2016-0022
|
[8] |
Fan H L, Long M J, Yu S, et al. Uniform secondary cooling pattern for minimizing surface reheating of the strand during round bloom continuous casting. JOM, 2018, 70(2): 237 doi: 10.1007/s11837-017-2679-x
|
[9] |
Ma J C, Wang B, Zhang D, et al. Optimization of secondary cooling water distribution for improving the billet quality for a small caster. ISIJ Int, 2018, 58(5): 915 doi: 10.2355/isijinternational.ISIJINT-2017-711
|
[10] |
Wang X Y, Liu Q, Wang B, et al. Optimal control of secondary cooling for medium thickness slab continuous casting. Ironmaking Steelmaking, 2011, 38(7): 552 doi: 10.1179/1743281211Y.0000000031
|
[11] |
王先勇, 劉青, 胡志剛, 等. 噴嘴布置方式對中厚板坯連鑄二次冷卻效果的影響. 北京科技大學學報, 2010, 32(8):1064
Wang X Y, Liu Q, Hu Z G, et al. Influence of nozzle layouts on the secondary cooling effect of medium thickness slabs in continuous casting. J Univ Sci Technol Beijing, 2010, 32(8): 1064
|
[12] |
Long M J, Chen D F. Study on mitigating center macro-segregation during steel continuous casting process. Steel Res Int, 2011, 82(7): 847 doi: 10.1002/srin.201100085
|
[13] |
Long M J, Chen D F, Zhang L F, et al. A mathematical model for mitigating centerline macro segregation in continuous casting slab. Metalurgia Int, 2011, 16(10): 19
|
[14] |
Ji C, Luo S, Zhu M Y, et al. Uneven solidification during wide-thick slab continuous casting process and its influence on soft reduction zone. ISIJ Int, 2014, 54(1): 103 doi: 10.2355/isijinternational.54.103
|
[15] |
Ji C, Cai Z Z, Wang W L, et al. Effect of transverse distribution of secondary cooling water on corner cracks in wide thick slab continuous casting process. Ironmaking Steelmaking, 2014, 41(5): 360 doi: 10.1179/1743281213Y.0000000161
|
[16] |
占賢輝, 毛敬華, 閻建武, 等. 特厚板坯連鑄機二冷區噴嘴選型與布置. 鋼鐵, 2014, 49(5):42
Zhan X H, Mao J H, Yan J W, et al. Selection and layout of nozzle for ultra-thick slab continuous caster. Iron Steel, 2014, 49(5): 42
|
[17] |
Wang B, Ji Z P, Liu W H, et al. Application of hot strength and ductility test to optimization of secondary cooling system in billet continuous casting process. J Iron Steel Res Int, 2008, 15(4): 16 doi: 10.1016/S1006-706X(08)60137-5
|
[18] |
Chaudhuri S, Singh R K, Patwari K, et al. Design and implementation of an automated secondary cooling system for the continuous casting of billets. ISA Trans, 2010, 49(1): 121 doi: 10.1016/j.isatra.2009.09.005
|
[19] |
Ramírez-López A, Aguilar-López R, Palomar-Pardavé M, et al. Simulation of heat transfer in steel billets during continuous casting. Int J Miner Metall Mater, 2010, 17(4): 403 doi: 10.1007/s12613-010-0333-5
|
[20] |
Yu Y, Luo X C, Zhang H X, et al. Dynamic optimization method of secondary cooling water quantity in continuous casting based on three-dimensional transient nonlinear convective heat transfer equation. Appl Therm Eng, 2019, 160: 113988 doi: 10.1016/j.applthermaleng.2019.113988
|
[21] |
Han Y S, Wang X Y, Zhang J S, et al. Comparison of transverse uniform and non-uniform secondary cooling strategies on heat transfer and solidification structure of continuous-casting billet. Metals, 2019, 9(5): 543 doi: 10.3390/met9050543
|
[22] |
Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409
|
[23] |
Nozaki T, Matsuno J, Murata K, et al. A secondary cooling pattern for preventing surface cracks of continuous casting slab. Trans Iron Steel Inst Jpn, 1978, 18(6): 330 doi: 10.2355/isijinternational1966.18.330
|
[24] |
Sediako D, Sediako O, Lin K J. Some aspects of thermal analysis and technology upgrading in steel continuous casting. Can Metall Q, 1999, 38(5): 377 doi: 10.1179/cmq.1999.38.5.377
|
[25] |
Kulkarni M S, Subash Babu A. Optimization of continuous casting using simulation. Mater Manuf Processes, 2005, 20(4): 595 doi: 10.1081/AMP-200041874
|