<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
JIAO Han-dong, WANG Ming-yong, SONG Wei-li, JIAO Shu-qiang. Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(10): 1335-1342. doi: 10.13374/j.issn2095-9389.2019.12.25.005
Citation: JIAO Han-dong, WANG Ming-yong, SONG Wei-li, JIAO Shu-qiang. Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(10): 1335-1342. doi: 10.13374/j.issn2095-9389.2019.12.25.005

Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis

doi: 10.13374/j.issn2095-9389.2019.12.25.005
More Information
  • LaCrO3 ceramic is a promising function material in areas such as high temperature piezoelectric materials and solid oxide fuel cells (SOFC). However, its practical applications are limited by fatal flaws including their low density and poor conductivity. To address these challenges, spark plasma sintering (SPS) was used to prepare the high-density LaCrO3 ceramic. Additionally, Ru, a multivalent metallic element, was doped in the A site of the LaCrO3 ceramic to investigate the conductivity of the La1?xRuxCrO3 (x=0?0.25). X-ray power diffraction (XRD) results and scanning electron microscope images show that the sintered La1?xRuxCrO3 ceramic has a single perovskite phase and high density. The characteristic peak shifting observed in the XRD pattern indicates that the Ru element has been successfully doped in the A site of the LaCrO3 ceramic. Whereas, the results of the Energy dispersive spectrometer (EDS) prove that there is no obvious change in the Ru content before and after sintering by SPS, which indicates that no actual Ru loss can occur during the SPS process at 1600 °C. Moreover, the conductivity of the sintered La1?xRuxCrO3 increases with increasing Ru content and temperature. The results also indicate that there is good linear relationship between ln(σT) and 1/T, demonstrating that the conductivity of the La1?xRuxCrO3 obeys the Arrhenius law. The activation energy of the doped La1?xRuxCrO3 ceramic is smaller than that of the LaCrO3 ceramic. Lastly, the feasibility of the application of doped La1?xRuxCrO3 ceramics as the inert anode of molten salt electrolysis in CaCl2 melt has been investigated at the temperature of 800 °C. These findings demonstrate that the doped La1?xRuxCrO3 ceramic has an excellent chemical corrosion-resistant property. However, it has poor thermal stability, which inhibits its application as an inert anode. Future studies focusing on the improvement of the heat-shock resistance and elucidating the corrosion resistance mechanism of La1?xRuxCrO3 in CaCl2 melt is recommended.

     

  • loading
  • [1]
    Hodes G. Perovskite-based solar cells. Science, 2013, 342(6156): 317 doi: 10.1126/science.1245473
    [2]
    Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358(6382): 136 doi: 10.1038/358136a0
    [3]
    Maeno Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper. Nature, 1994, 372(6506): 532 doi: 10.1038/372532a0
    [4]
    Sfeir J. LaCrO3-based anodes: stability considerations. J Power Sources, 2003, 118(1-2): 276 doi: 10.1016/S0378-7753(03)00099-5
    [5]
    Zhou J S, Alonso J A, Muonz A, et al. Magnetic structure of LaCrO3 perovskite under high pressure from in situ neutron diffraction. Phys Rev Lett, 2011, 106(5): 057201 doi: 10.1103/PhysRevLett.106.057201
    [6]
    Hayashi H, Watanabe M, Inaba H. Measurement of thermal expansion coefficient of LaCrO3. Thermochim Acta, 2000, 359(1): 77 doi: 10.1016/S0040-6031(00)00507-4
    [7]
    Ding X F, Liu Y J, Gao L, et al. Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method. J Alloys Compd, 2008, 458(1-2): 346 doi: 10.1016/j.jallcom.2007.03.110
    [8]
    Jiang Y Z, Gao J F, Liu M F, et al. Synthesis of LaCrO3 films using spray pyrolysis technique. Mater Lett, 2007, 61(8-9): 1908 doi: 10.1016/j.matlet.2006.07.153
    [9]
    Situmeang R, Supryanto R, Kahar L N A, et al. Characteristics of nano-size LaCrO3 prepared through sol-gel route using pectin as emulsifying agent. Orient J Chem, 2017, 33(4): 1705 doi: 10.13005/ojc/330415
    [10]
    Wang S, Huang K K, Hou C M, et al. Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE= La, Pr, Nd, Sm). Dalton Trans, 2015, 44(39): 17201 doi: 10.1039/C5DT02342D
    [11]
    Hilpert K, Steinbrech R W, Boroomand F, et al. Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J Eur Ceram Soc, 2003, 23(16): 3009 doi: 10.1016/S0955-2219(03)00097-9
    [12]
    Mori M, Hiei Y, Sammes N M. Sintering behavior of Ca-or Sr-doped LaCrO3 perovskites including second phase of AECrO4 (AE= Sr, Ca) in air. Solid State Ionics, 2000, 135(1-4): 743 doi: 10.1016/S0167-2738(00)00372-6
    [13]
    Duran P, Tartaj J, Capel F, et al. Formation, sintering and thermal expansion behaviour of Sr-and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method. J Eur Ceram Soc, 2004, 24(9): 2619 doi: 10.1016/j.jeurceramsoc.2003.09.016
    [14]
    Liu M F, Zhao L, Dong D H, et al. High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs. J Power Sources, 2008, 177(2): 451 doi: 10.1016/j.jpowsour.2007.11.058
    [15]
    Oishi M, Yashiro K, Hong J O, et al. Oxygen nonstoichiometry of B-site doped LaCrO3. Solid State Ionics, 2007, 178(3-4): 307 doi: 10.1016/j.ssi.2006.12.018
    [16]
    Corrêa H P S, Paiva-Santos C O, Setz L F, et al. Crystal structure refinement of Co-doped lanthanum chromites. Powder Diffract, 2008, 23(Suppl1): S18
    [17]
    Suda E, Pacaud B, Seguelong T, et al. Sintering characteristics and thermal expansion behavior of Li-doped lanthanum chromite perovskites depending upon preparation method and Sr doping. Solid State Ionics, 2002, 151(1-4): 335 doi: 10.1016/S0167-2738(02)00533-7
    [18]
    Mori M, Sammes N M. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method. Solid State Ionics, 2002, 146(3-4): 301 doi: 10.1016/S0167-2738(01)01020-7
    [19]
    Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361 doi: 10.1038/35030069
    [20]
    Jiao S Q, Fray D J. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metall Mater Trans B, 2010, 41(1): 74 doi: 10.1007/s11663-009-9281-8
    [21]
    Yin H, Mao X, Tang D, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ Sci, 2013, 6(5): 1538 doi: 10.1039/c3ee24132g
    [22]
    Abdelkader A M, Kilby K T, Cox A, et al. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev, 2013, 113(5): 2863 doi: 10.1021/cr200305x
    [23]
    Wang S B, Ge J B, Hu Y J, et al. Electrochemical reduction of iron oxide in molten sodium hydroxide based on a Ni0.94Si0.04Al0.02 metallic inert anode. Electrochim Acta, 2013, 87: 148 doi: 10.1016/j.electacta.2012.09.044
    [24]
    Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall, 2002, 45(4): 322 doi: 10.1179/003258902225007041
    [25]
    Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 doi: 10.1002/adem.201300409
    [26]
    Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 doi: 10.1007/s10853-006-6555-2
    [27]
    Jiao H D, Wang J X, Ge J B, et al. Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites. Solid State Commun, 2016, 231-232: 53 doi: 10.1016/j.ssc.2016.02.003
    [28]
    El-Sheikh S M, Khedr T M, Zhang G S, et al. Tailored synthesis of anatase-brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV-Vis light. Chem Eng J, 2017, 310: 428 doi: 10.1016/j.cej.2016.05.007
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (3374) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频