<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
YAO Meng-liang, GAN Yun-hua, LIANG Jia-lin, LI Yong. Research progress in integrated thermal management of electric vehicles[J]. Chinese Journal of Engineering, 2020, 42(4): 412-422. doi: 10.13374/j.issn2095-9389.2019.12.20.003
Citation: YAO Meng-liang, GAN Yun-hua, LIANG Jia-lin, LI Yong. Research progress in integrated thermal management of electric vehicles[J]. Chinese Journal of Engineering, 2020, 42(4): 412-422. doi: 10.13374/j.issn2095-9389.2019.12.20.003

Research progress in integrated thermal management of electric vehicles

doi: 10.13374/j.issn2095-9389.2019.12.20.003
More Information
  • Corresponding author: E-mail: ganyh@scut.edu.cn
  • Received Date: 2019-12-20
  • Publish Date: 2020-04-01
  • Severe energy crisis and environmental pollution are the foremost problems in the world today. Electric vehicles have several advantages over traditional internal combustion engine-based vehicles, such as high energy efficiency and low emissions, which are effective in alleviating the energy crisis and environmental problems. However, the electric vehicles’ performance is greatly affected by temperature. An excessively high temperature during the charging and discharging process may accelerate the degradation rate of a battery cell and shorten its lifespan. In contrast, an excessively low temperature may reduce the battery’s efficiency and affect its discharge capacity. Air-conditioning systems in electric vehicles consume electricity to create a comfortable environment in the passenger compartment. However, excessive temperature of the motor drive will decrease its efficiency. Therefore, the battery, passenger compartment and motor drive system must be maintained at adequate temperatures to ensure the safety, comfort, and economy of the electric vehicles. Previous studies usually focused on a single thermal management system at a time, such as a battery thermal management system, air-conditioning systems in electric vehicles, and motor thermal management system. This means that the coupling relationships between the above-mentioned thermal management systems and the performance analysis of the integrated thermal management system at the vehicle level were not properly investigated. This study focused on the key issues in the construction of an integrated thermal management system for electric vehicles. Firstly, the heat generation models of the battery, passenger compartment, and motor drive system were summarized. Secondly, the existing thermal management methods for these three systems were systematically reviewed. Especially, the research status, operation control, and performance evaluation of the integrated thermal management system were especially analyzed. Finally, the deficiencies of the previous studies were summarized and the research prospects were proposed. It is pointed out that it is necessary to study the accurate heat generation models, develop the compact and efficient integrated thermal management system, and optimize the operation control of the integrated thermal management system under a comprehensive performance evaluation system in the near future.

     

  • loading
  • [1]
    Tilt B. China’s air pollution crisis: science and policy perspectives. Environ Sci Policy, 2019, 92: 275 doi: 10.1016/j.envsci.2018.11.020
    [2]
    Wada M. Research and development of electric vehicles for clean transportation. J Environ Sci, 2009, 21(6): 745 doi: 10.1016/S1001-0742(08)62335-9
    [3]
    Andersen P H, Mathews J A, Rask M. Integrating private transport into renewable energy policy: the strategy of creating intelligent recharging grids for electric vehicles. Energy Policy, 2009, 37(7): 2481 doi: 10.1016/j.enpol.2009.03.032
    [4]
    安富強, 趙建源, 陳璐凡, 等. 純電動車用18650電池的一致性研究. 工程科學學報, 2017, 39(1):107

    An F Q, Zhao J Y, Chen L F, et al. Consistency study on 18650 cells used in electric vehicles. Chin J Eng, 2017, 39(1): 107
    [5]
    安富強, 周偉男, 李平. 鋰離子電芯用電極對溫度與SOC的敏感性. 工程科學學報, 2018, 40(6):729

    An F Q, Zhou W N, Li P. Sensitivity of electrodes in a lithium ion cell to temperature and SOC. Chin J Eng, 2018, 40(6): 729
    [6]
    Shim J, Kostecki R, Richardson T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sources, 2002, 112(1): 222 doi: 10.1016/S0378-7753(02)00363-4
    [7]
    Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries. J Power Sources, 2003, 115(1): 137 doi: 10.1016/S0378-7753(02)00618-3
    [8]
    Zhang Z Q, Wang D D, Zhang C Q, et al. Electric vehicle range extension strategies based on improved AC system in cold climate - a review. Int J Refrig, 2018, 88: 141 doi: 10.1016/j.ijrefrig.2017.12.018
    [9]
    Khoury G E, Clodic D. Method of test and measurements of fuel consumption due to air conditioning operation on the new prius II hybrid vehicle. SAE Trans, 2005, 114: 2563
    [10]
    閔海濤, 王曉丹, 曾小華, 等. 電動汽車空調系統參數匹配與計算研究. 汽車技術, 2009(6):19 doi: 10.3969/j.issn.1000-3703.2009.06.005

    Min H T, Wang X, Zeng X H, et al. Parameter design and computation study for air conditioning system of electric vehicle. Automob Technol, 2009(6): 19 doi: 10.3969/j.issn.1000-3703.2009.06.005
    [11]
    張前, 馮明, 陳俊, 等. 車載超高速永磁無刷電機驅動器. 工程科學學報, 2017, 39(10):1565

    Zhang Q, Feng M, Chen J, et al. A vehicle mounted super high speed permanent magnet brushless motor drive. Chin J Eng, 2017, 39(10): 1565
    [12]
    Chen S C, Wan C C, Wang Y Y. Thermal analysis of lithium-ion batteries. J Power Sources, 2005, 140(1): 111 doi: 10.1016/j.jpowsour.2004.05.064
    [13]
    Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc, 1985, 132(1): 5 doi: 10.1149/1.2113792
    [14]
    Chiew J, Chin C S, Toh W D, et al. A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery. Appl Therm Eng, 2019, 147: 450 doi: 10.1016/j.applthermaleng.2018.10.108
    [15]
    田華, 王偉光, 舒歌群, 等. 基于多尺度、電化學?熱耦合模型的鋰離子電池生熱特性分析. 天津大學學報, 2016, 49(7):734

    Tian H, Wang W G, Shu G Q, et al. Analysis of heat generation in a Li-ion battery based on a multi-scale and electrochemical-thermal coupled model. J Tianjin Univ, 2016, 49(7): 734
    [16]
    Liang J L, Gan Y H, Song W F, et al. Thermal-Electrochemical simulation of electrochemical characteristics and temperature difference for a battery module under two-stage fast charging. J Energy Storage, 2020, 29: 101307 doi: 10.1016/j.est.2020.101307
    [17]
    張立軍, 李文博, 程洪正. 三維鋰離子單電池電化學?熱耦合模型. 電源技術, 2016, 40(7):1362 doi: 10.3969/j.issn.1002-087X.2016.07.007

    Zhang L J, Li W B, Cheng H Z. Coupled thermal-electrochemical model of 3D lithium-ion battery. Chin J Power Sources, 2016, 40(7): 1362 doi: 10.3969/j.issn.1002-087X.2016.07.007
    [18]
    姬芬竹, 劉麗君, 楊世春, 等. 電動汽車動力電池生熱模型和散熱特性. 北京航空航天大學學報, 2014, 40(1):18

    Ji F Z, Liu L J, Yang S C, et al. Heating generation model and heat dissipation performance of the power battery in electric vehicle. J Beijing Univ Aeron Astron, 2014, 40(1): 18
    [19]
    吳雙. 汽車空調車身熱負荷計算方法分析與比較. 制冷與空調, 2002, 2(6):20 doi: 10.3969/j.issn.1009-8402.2002.06.007

    Wu S. Contrast and analysis on the calculation methods of air conditioning load in automobile. Refrig Air-Cond, 2002, 2(6): 20 doi: 10.3969/j.issn.1009-8402.2002.06.007
    [20]
    王靖宇, 薛超坦, 胡興軍, 等. 基于空調送風參數的車室內流模擬. 吉林大學學報: 工學版, 2017, 47(1):50

    Wang J Y, Xue C T, Hu X J, et al. Simulation of airflow in passenger compartment based on air-conditioning supply parameters. J Jilin Univ Eng Technol Ed, 2017, 47(1): 50
    [21]
    葉立, 趙天瑋, 陳宇, 等. 某電動汽車整車熱負荷仿真模型的建立及分析. 新型工業化, 2019, 9(5):70

    Ye L, Zhao T W, Chen Y, et al. Establishment and analysis of a simulation model for an electric vehicle’s thermal load. J New Ind, 2019, 9(5): 70
    [22]
    Bertotti G. General properties of power losses in soft ferromagnetic materials. IEEE Trans Magn, 1988, 24(1): 621 doi: 10.1109/20.43994
    [23]
    Chen K, Li Z Y, Chen Y M, et al. Design of parallel air-cooled battery thermal management system through numerical study. Energies, 2017, 10(10): 1677 doi: 10.3390/en10101677
    [24]
    Chen Y F, Evans J W. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc, 1993, 140(7): 1833 doi: 10.1149/1.2220724
    [25]
    Nelson P, Dees D, Amine K, et al. Modeling thermal management of lithium-ion PNGV batteries. J Power Sources, 2002, 110(2): 349 doi: 10.1016/S0378-7753(02)00197-0
    [26]
    Park S, Jung D. Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle. J Power Sources, 2013, 227: 191 doi: 10.1016/j.jpowsour.2012.11.039
    [27]
    Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng, 2019, 149: 192 doi: 10.1016/j.applthermaleng.2018.12.020
    [28]
    Wang C, Zhang G Q, Meng L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system. Int J Energy Res, 2017, 41(15): 2468 doi: 10.1002/er.3801
    [29]
    Yang X H, Tan S C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manage, 2016, 117: 577 doi: 10.1016/j.enconman.2016.03.054
    [30]
    Lan C J, Xu J, Qiao Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl Therm Eng, 2016, 101: 284 doi: 10.1016/j.applthermaleng.2016.02.070
    [31]
    Kizilel R, Lateef A, Sabbah R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J Power Sources, 2008, 183(1): 370 doi: 10.1016/j.jpowsour.2008.04.050
    [32]
    Lv Y F, Situ W F, Yang X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Convers Manage, 2018, 163: 250 doi: 10.1016/j.enconman.2018.02.061
    [33]
    Weng J W, He Y P, Ouyang D X, et al. Thermal performance of PCM and branch-structured fins for cylindrical power battery in a high-temperature environment. Energy Convers Manage, 2019, 200: 112106 doi: 10.1016/j.enconman.2019.112106
    [34]
    Ranjbaran Y S, Haghparast S J, Shojaeefard M H, et al. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim, 2019, https://doi.org/10.1007/s10973-019-08989-w
    [35]
    Jilte R D, Kumar R, Ahmadi M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling. Appl Therm Eng, 2019, 161: 114199 doi: 10.1016/j.applthermaleng.2019.114199
    [36]
    Yu G Y, Chiang S W, Chen W, et al. Thermal management of a Li-ion battery for electric vehicles using PCM and water-cooling board. Key Eng Mater, 2019, 814: 307 doi: 10.4028/www.scientific.net/KEM.814.307
    [37]
    Chopra K, Tyagi V V, Pathak A K, et al. Experimental performance evaluation of a novel designed phase change material integrated manifold heat pipe evacuated tube solar collector system. Energy Convers Manage, 2019, 198: 111896 doi: 10.1016/j.enconman.2019.111896
    [38]
    Chen G, Tang Y, Wan Z P, et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. Int Commun Heat Mass Transfer, 2019, 100: 12 doi: 10.1016/j.icheatmasstransfer.2018.10.011
    [39]
    Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe. Appl Therm Eng, 2019, 162: 114215 doi: 10.1016/j.applthermaleng.2019.114215
    [40]
    厲青峰, 王亞楠, 何鑫, 等. 脈動熱管的理論研究與應用新進展. 工程科學學報, 2019, 41(9):1115

    Li Q F, Wang Y N, He X, et al. New progress in the theoretical research and application of pulsating heat pipe. Chin J Eng, 2019, 41(9): 1115
    [41]
    葉欣, 趙耀華, 全貞花, 等. 微熱管陣列應用于鋰電池模塊的散熱實驗. 工程科學學報, 2018, 40(1):120

    Ye X, Zhao Y H, Quan Z H, et al. Experiment on heat dispersion of lithium-ion battery based on micro heat pipe array. Chin J Eng, 2018, 40(1): 120
    [42]
    Liang J L, Gan Y H, Li Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers Manage, 2018, 155: 1 doi: 10.1016/j.enconman.2017.10.063
    [43]
    甘云華, 王建欽, 梁嘉林. 基于熱管的圓柱形電池包冷卻性能分析. 化工學報, 2018, 69(5):1964

    Gan Y H, Wang J Q, Liang J L. Cooling performance of cylindrical battery pack based on thermal management system with heat pipe. CIESC J, 2018, 69(5): 1964
    [44]
    Wang J Q, Gan Y H, Liang J L, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng, 2019, 151: 475 doi: 10.1016/j.applthermaleng.2019.02.036
    [45]
    Liang J L, Gan Y H, Li Y, et al. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures. Energy, 2019, 189: 116233 doi: 10.1016/j.energy.2019.116233
    [46]
    Gan Y H, Wang J Q, Liang J L, et al. Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng, 2020, 164: 114523 doi: 10.1016/j.applthermaleng.2019.114523
    [47]
    Jiang Z Y, Qu Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study. Appl Energy, 2019, 242: 378 doi: 10.1016/j.apenergy.2019.03.043
    [48]
    Qi Z G. Advances on air conditioning and heat pump system in electric vehicles - a review. Renewable Sustainable Energy Rev, 2014, 38: 754 doi: 10.1016/j.rser.2014.07.038
    [49]
    Lee H S, Lee M Y. Steady state and start-up performance characteristics of air source heat pump for cabin heating in an electric passenger vehicle. Int J Refrig, 2016, 69: 232 doi: 10.1016/j.ijrefrig.2016.06.021
    [50]
    Ahn J H, Lee J S, Baek C, et al. Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy. Energy, 2016, 115: 67 doi: 10.1016/j.energy.2016.08.104
    [51]
    Dong J K, Deng S M, Jiang Y Q, et al. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump. Appl Therm Eng, 2012, 37: 380 doi: 10.1016/j.applthermaleng.2011.11.052
    [52]
    Zhang Z Q, Li W Y, Shi J Y, et al. A study on electric vehicle heat pump systems in cold climates. Energies, 2016, 9(11): 881 doi: 10.3390/en9110881
    [53]
    Liu C C, Zhang Y, Gao T Y, et al. Performance evaluation of propane heat pump system for electric vehicle in cold climate. Int J Refrig, 2018, 95: 51 doi: 10.1016/j.ijrefrig.2018.08.020
    [54]
    Yilmazoglu M Z. Experimental and numerical investigation of a prototype thermoelectric heating and cooling unit. Energy Build, 2016, 113: 51 doi: 10.1016/j.enbuild.2015.12.046
    [55]
    Torregrosa-Jaime B, Payá J, Corberán J M. Application of magnetic cooling in electric vehicles. Sci Technol Built Environ, 2016, 22(5): 544 doi: 10.1080/23744731.2016.1186459
    [56]
    吳瑋, 林用滿, 高日新, 等. 冷熱聯合儲能式電動汽車空調系統的設計與經濟性分析. 制冷與空調, 2011, 11(5):25 doi: 10.3969/j.issn.1009-8402.2011.05.008

    Wu W, Lin Y M, Gao R X, et al. Design and economic analysis on electrical vehicles air conditioner with energy storage system combined with cold and heat. Refrig Air-Cond, 2011, 11(5): 25 doi: 10.3969/j.issn.1009-8402.2011.05.008
    [57]
    Jiang L, Wang R Z, Li J B, et al. Performance analysis on a novel sorption air conditioner for electric vehicles. Energy Convers Manage, 2018, 156: 515 doi: 10.1016/j.enconman.2017.11.077
    [58]
    Lindh P, Petrov I, Immonen P, et al. Performance of a direct-liquid-cooled motor in an electric bus under different load cycles. IEEE Access, 2019, 7: 86897 doi: 10.1109/ACCESS.2019.2925711
    [59]
    王升平, 吳柏禧, 溫萬昱, 等. 基于熱管?風冷系統的新能源汽車電機熱分析. 電機與控制應用, 2018, 45(8):91 doi: 10.3969/j.issn.1673-6540.2018.08.016

    Wang S P, Wu B X, Wen W Y, et al. Thermal analysis of new energy vehicle motor based on heat pipe-air cooling system. Electr Mach Control Appl, 2018, 45(8): 91 doi: 10.3969/j.issn.1673-6540.2018.08.016
    [60]
    劉志勇, 沈長海, 鄒金校, 等. 電動汽車空調與電池熱管理系統設計與匹配. 制冷與空調, 2018, 18(1):67 doi: 10.3969/j.issn.1009-8402.2018.01.015

    Liu Z Y, Shen C H, Zou J X, et al. Design and optimization for air conditioning system and battery thermal management system of electric vehicle. Refrig Air-Cond, 2018, 18(1): 67 doi: 10.3969/j.issn.1009-8402.2018.01.015
    [61]
    方財義, 汪韓送, 羅高喬, 等. 純電動汽車熱管理系統的研究. 電子設計工程, 2014, 22(4):137 doi: 10.3969/j.issn.1674-6236.2014.04.040

    Fang C Y, Wang H S, Luo G Q, et al. Research of electric vehicle thermal management system. Electron Des Eng, 2014, 22(4): 137 doi: 10.3969/j.issn.1674-6236.2014.04.040
    [62]
    Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle. Appl Therm Eng, 2018, 136: 16 doi: 10.1016/j.applthermaleng.2018.02.093
    [63]
    楊小龍, 馬自會, 楊林, 等. 基于熱泵的純電動轎車熱管理集成開發. 中南大學學報: 自然科學版, 2016, 47(8):2855

    Yang X L, Ma Z H, Yang L, et al. Thermal management system of electric vehicle based on heat pump. J Cent South Univ Sci Technol, 2016, 47(8): 2855
    [64]
    Cen J W, Li Z B, Jiang F M. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management. Energy Sustainable Dev, 2018, 45: 88 doi: 10.1016/j.esd.2018.05.005
    [65]
    馮權, 黃瑞, 陳芬放, 等. 基于模型預測的純電動汽車動力總成熱管理策略. 現代機械, 2019(2):8

    Feng Q, Huang R, Chen F F, et al. Thermal management strategy of battery electric vehicle powertrain based on model predictive control. Mod Mach, 2019(2): 8
    [66]
    Zhang Q G, Xu L F, Li J Q, et al. Performance prediction of proton exchange membrane fuel cell engine thermal management system using 1D and 3D integrating numerical simulation. Int J Hydrogen Energy, 2018, 43(3): 1736 doi: 10.1016/j.ijhydene.2017.10.088
    [67]
    Liu Y B, Gao Q, Zhang T S, et al. Exploration of interactive thermal influence characteristics of power and air conditioning system based on 1D/3D coupling calculation in electric vehicle underhood. Appl Therm Eng, 2020, 167: 114717 doi: 10.1016/j.applthermaleng.2019.114717
    [68]
    Hamut H S, Dincer I, Naterer G F. Exergy analysis of a TMS (thermal management system) for range-extended EVs (electric vehicles). Energy, 2012, 46(1): 117 doi: 10.1016/j.energy.2011.12.041
    [69]
    Javani N, Dincer I, Naterer G F, et al. Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles. Appl Therm Eng, 2014, 64(1-2): 471 doi: 10.1016/j.applthermaleng.2013.11.053
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (3386) PDF downloads(197) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频