Citation: | WANG Kun, YANG Peng, Lü Wen-sheng, ZHU Li-yi, YU Guang-ming. Current status and development trend of UAV remote sensing applications in the mining industry[J]. Chinese Journal of Engineering, 2020, 42(9): 1085-1095. doi: 10.13374/j.issn2095-9389.2019.12.18.003 |
[1] |
Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm Eng Remote Sens, 2015, 81(4): 281 doi: 10.14358/PERS.81.4.281
|
[2] |
李德仁. 攝影測量與遙感學的發展展望. 武漢大學學報: 信息科學版, 2008, 33(12):1211
Li D R. Development prospect of photogrammetry and remote sensing. Geomat Inform Sci Wuhan Univ, 2008, 33(12): 1211
|
[3] |
李德仁, 李明. 無人機遙感系統的研究進展與應用前景. 武漢大學學報: 信息科學版, 2014, 39(5):505
Li D R, Li M. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomat Inform Sci Wuhan Univ, 2014, 39(5): 505
|
[4] |
Roosevelt C H. Mapping site-level microtopography with real-time kinematic global navigation satellite systems (RTK GNSS) and unmanned aerial vehicle photogrammetry (UAVP). Open Archaeol, 2014, 1: 29
|
[5] |
閆東, 周乃恩. 彩虹無人機系列應用及展望. 軟件, 2018, 39(9):117
Yan D, Zhou N E. The applications and prospects of CH UAV systems. Comput Eng Software, 2018, 39(9): 117
|
[6] |
Giordan D, Hayakawa Y, Nex F, et al. The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat Hazards Earth Syst Sci, 2018, 18(4): 1079 doi: 10.5194/nhess-18-1079-2018
|
[7] |
Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens, 2014, 92: 79 doi: 10.1016/j.isprsjprs.2014.02.013
|
[8] |
李遷. 低空無人機遙感在礦山監測中的應用研究——以贛州稀土礦區為例[學位論文]. 北京: 中國地質大學(北京), 2013
Li Q. Application of Low-Altitude UAV Remote Sensing in Mine Monitoring [Dissertation]. Beijing: China University of Geosciences (Beijing), 2013
|
[9] |
Xiang J, Chen J P, Sofia G, et al. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ Earth Sci, 2018, 77(6): 220 doi: 10.1007/s12665-018-7383-9
|
[10] |
Chen J P, Li K, Chang K J, et al. Open-pit mining geomorphic feature characterisation. Int J Appl Earth Observ Geoinform, 2015, 42: 76 doi: 10.1016/j.jag.2015.05.001
|
[11] |
張玉俠, 蘭鵬濤, 金元春, 等. 無人機三維傾斜攝影技術在露天礦山監測中的實踐與探索. 測繪通報, 2017(增刊): 114
Zhang Y X, Lan P T, Jin Y C, et al. Practice and exploration of unmanned aerial vehicle three-dimensional oblique photogrammetry technology in the monitoring of open pit mines. Bull Surv Mapp, 2017(Suppl): 114
|
[12] |
許志華, 吳立新, 陳紹杰, 等. 基于無人機影像的露天礦工程量監測分析方法. 東北大學學報: 自然科學版, 2016, 37(1):84
Xu Z H, Wu L X, Chen S J, et al. Method of engineering volume monitoring and calculation for open-pit mine from UAV images. J Northeast Univ Nat Sci, 2016, 37(1): 84
|
[13] |
Esposito G, Mastrorocco G, Salvini R, et al. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ Earth Sci, 2017, 76(3): 103 doi: 10.1007/s12665-017-6409-z
|
[14] |
楊青山, 范彬彬, 魏顯龍, 等. 無人機攝影測量技術在新疆礦山儲量動態監測中的應用. 測繪通報, 2015(5):91
Yang Q S, Fan B B, Wei X L, et al. Research on the application of unmanned aerial vehicle technology in Xinjiang mineral monitoring. Bull Surv Mapp, 2015(5): 91
|
[15] |
Raeva P L, Filipova S L, Filipov D G. Volume computation of a stockpile—A study case comparing GPS and UAV measurements in an open pit quarry. Int Arch Photogram Remote Sens Spatial Inform Sci, 2016, XLI-B1: 999 doi: 10.5194/isprsarchives-XLI-B1-999-2016
|
[16] |
Tong X H, Liu X F, Chen P, et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of Open-Pit Mine Areas. Remote Sens, 2015, 7(6): 6635 doi: 10.3390/rs70606635
|
[17] |
崔志強. 高精度航空物探在重要成礦帶資源調查中的應用. 物探與化探, 2018, 42(1):38
Cui Z Q. The application of the high precision airborne geophysical survey to the investigation of important metallogenic belts. Geophys Geochem Explor, 2018, 42(1): 38
|
[18] |
李飛, 丁志強, 崔志強, 等. CH-3無人機航磁測量系統在我國新疆不同地形區的應用示范. 地質與勘探, 2018, 54(4):735
Li F, Ding Z Q, Cui Z Q, et al. Application demonstration of the CH-3 UAV-borne magnetic survey system in different terrain areas of Xinjiang. Geol Explor, 2018, 54(4): 735
|
[19] |
王昆, 楊鵬, Hudson-Edwards Karen, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526
Wang K, Yang P, Hudson-Edwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526
|
[20] |
Rico M, Benito G, Salgueiro A R, et al. Reported tailings dam failures: a review of the European incidents in the worldwide context. J Hazard Mater, 2008, 152(2): 846 doi: 10.1016/j.jhazmat.2007.07.050
|
[21] |
WISE Uranium Project. Chronology of major tailings dam failures (from 1960) [EB/OL]. (2019-10-02) [2019-11-20]. https://www.wise-uranium.org/mdaf.html
|
[22] |
Rauhala A, Tuomela A, Davids C, et al. UAV remote sensing surveillance of a mine tailings impoundment in sub-arctic conditions. Remote Sens, 2017, 9(12): 1318 doi: 10.3390/rs9121318
|
[23] |
王昆. 尾礦庫潰壩演進SPH模擬與災害防控研究[學位論文]. 北京: 北京科技大學, 2019
Wang K. Research on Slurry Routing SPH Simulation and Hazards Prevention of Tailings Dam Failure [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[24] |
Fundão Tailings Dam Review Panel. Report on the Immediate Causes of the Failure of the Fundão Dam [EB/OL]. (2016-08-25) [2017-10-01].
|
[25] |
賈虎軍, 王立娟, 靳曉, 等. 基于無人機航測的尾礦庫三維空間數據獲取與風險分析. 中國安全生產科學技術, 2018, 14(7):115
Jia H J, Wang L J, Jin X, et al. Three-dimensional spatial data acquisition and risk analysis of tailings pond based on UAV aerial survey. J Saf Sci Technol, 2018, 14(7): 115
|
[26] |
馬國超, 王立娟, 馬松, 等. 無人機攝影測量在礦山尾礦庫建設規劃的應用. 測繪科學, 2018, 43(1):84
Ma G C, Wang L J, Ma S, et al. Application of UAV photogrammetry in construction planning of mine tailings reservoir. Sci Surv Mapp, 2018, 43(1): 84
|
[27] |
Chiabrando F, Sammartano G, Spanò A. A comparison among different optimization levels in 3D multi-sensor models. A test case in emergency context: 2016 Italian earthquake. Int Arch Photogram Remote Sens Spatial Inform Sci, 2017, 42-2(W3): 155
|
[28] |
Mavroulis S, Andreadakis E, Spyrou N I, et al. UAV and GIS based rapid earthquake-induced building damage assessment and methodology for EMS-98 isoseismal map drawing: The June 12, 2017 Mw 6.3 Lesvos (Northeastern Aegean, Greece) earthquake. Int J Disast Risk Reduct, 2019, 37: 101169 doi: 10.1016/j.ijdrr.2019.101169
|
[29] |
Yamazaki F, Matsuda T, Denda S, et al. Construction of 3D models of buildings damaged by earthquakes using UAV aerial images // Proceedings of the Tenth Pacific Conference Earthquake Engineering Building an Earthquake-Resilient Pacific. Sydney, 2015: 204
|
[30] |
楊燕, 杜甘霖, 曹起銅. 無人機航測技術在地質災害應急測繪中的研究與應用——以9.28麗水山體滑坡應急測繪為例. 測繪通報, 2017(增刊): 119
Yang Y, Du G L, Cao Q T, Application of UAV aerial surveying technology in geological disaster emergency mapping. Bull Surv Mapp, 2017(Suppl): 119
|
[31] |
臧克, 孫永華, 李京, 等. 微型無人機遙感系統在汶川地震中的應用. 自然災害學報, 2010, 19(3):162
Zang K, Sun Y H, Li J, et al. Application of miniature unmanned aerial vehicle remote sensing system to Wenchuan earthquake. J Nat Disast, 2010, 19(3): 162
|
[32] |
黃瑞金, 沈富強, 周興霞, 等. 無人機集群災情地理信息獲取關鍵技術及重大應用. 測繪通報, 2019(6):96
Huang R J, Shen F Q, Zhou X X, et al. The key technology of disaster geographic information acquisition in UAV cluster and major applications. Bull Surv Mapp, 2019(6): 96
|
[33] |
李明龍, 楊文婧, 易曉東, 等. 面向災難搜索救援場景的空地協同無人群體任務規劃研究. 機械工程學報, 2019, 55(11):1 doi: 10.3901/JME.2019.11.001
Li M L, Yang W J, Yi X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue. J Mech Eng, 2019, 55(11): 1 doi: 10.3901/JME.2019.11.001
|
[34] |
Boccardo P, Chiabrando F, Dutto F, et al. UAV deployment exercise for mapping purposes: evaluation of emergency response applications. Sensors, 2015, 15(7): 15717 doi: 10.3390/s150715717
|
[35] |
楊海軍, 李營, 朱海濤, 等. 無人機遙感技術在環境保護領域的應用. 高技術通訊, 2015, 25(6):607
Yang H J, Li Y, Zhu H T, et al. UAV remote sensing’s application in the environmental protection field. Chin High Technol Lett, 2015, 25(6): 607
|
[36] |
高冠杰, 侯恩科, 謝曉深, 等. 基于四旋翼無人機的寧夏羊場灣煤礦采煤沉陷量監測. 地質通報, 2018, 37(12):2264
Gao G J, Hou E K, Xie X S, et al. The monitoring of ground surface subsidence related to coal seams mining in Yangchangwan coal mine by means of unmanned aerial vehicle with quad-rotors. Geol Bull China, 2018, 37(12): 2264
|
[37] |
侯恩科, 首召貴, 徐友寧, 等. 無人機遙感技術在采煤地面塌陷監測中的應用. 煤田地質與勘探, 2017, 45(6):102
Hou E K, Shou Z G, Xu Y N, et al. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence. Coal Geol Explor, 2017, 45(6): 102
|
[38] |
肖武, 陳佳樂, 笪宏志, 等. 基于無人機影像的采煤沉陷區玉米生物量反演與分析. 農業機械學報, 2018, 49(8):169
Xiao W, Chen J L, Da H Z, et al. Inversion and analysis of maize biomass in coal mining subsidence area based on UAV images. Trans Chin Soc Agric Mach, 2018, 49(8): 169
|
[39] |
魏長婧, 汪云甲, 王堅, 等. 無人機影像提取礦區地裂縫信息技術研究. 金屬礦山, 2012(10):90
Wei C J, Wang Y J, Wang J, et al. The technical research of extracting ground fissure information in mining area with the UAV image. Met Mine, 2012(10): 90
|
[40] |
楊超, 蘇正安, 馬菁, 等. 基于無人機影像快速估算礦山排土場邊坡土壤侵蝕速率的方法. 水土保持通報, 2016, 36(6):126
Yang C, Su Z A, Ma J, et al. Method of soil erosion rate estimation on mineland dump slope based on unmanned aerial vehicle image. Bull Soil Water Conserv, 2016, 36(6): 126
|
[41] |
趙星濤, 胡奎, 盧曉攀, 等. 無人機低空航攝的礦山地質災害精細探測方法. 測繪科學, 2014, 39(6):49
Zhao X T, Hu K, Lu X P, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle. Sci Surv Mapp, 2014, 39(6): 49
|
[42] |
D'Oleire-Oltmanns S, Marzolff I, Peter K D, et al. Unmanned aerial vehicle (UAV) for monitoring soil erosion in morocco. Remote Sens, 2012, 4(11): 3390 doi: 10.3390/rs4113390
|
[43] |
何原榮, 陳鑒知, 林泉, 等. 航拍影像與點云數據在礦區生態修復中的應用. 中南林業科技大學學報, 2017, 37(4):79
He Y R, Chen J Z, Lin Q, et al. Applications in the mining ecological restoration based on aerial imaging and point cloud data. J Cent South Univ Forest Technol, 2017, 37(4): 79
|
[44] |
Hassan-Esfahani L, Torres-Rua A, Jensen A, et al. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens, 2015, 7(3): 2627 doi: 10.3390/rs70302627
|
[45] |
Tofani V, Segoni S, Agostini A, et al. Use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci, 2013, 13(2): 299 doi: 10.5194/nhess-13-299-2013
|
[46] |
Casagli N, Frodella W, Morelli S, et al. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron Disast, 2017, 4(1): 9 doi: 10.1186/s40677-017-0073-1
|
[47] |
Rossi G, Tanteri L, Tofani V, et al. Multitemporal UAV surveys for landslide mapping and characterization. Landslides, 2018, 15(5): 1045 doi: 10.1007/s10346-018-0978-0
|
[48] |
Balek J, Blah?t J. A critical evaluation of the use of an inexpensive camera mounted on a recreational unmanned aerial vehicle as a tool for landslide research. Landslides, 2017, 14(3): 1217 doi: 10.1007/s10346-016-0782-7
|
[49] |
Mateos R M, Azanon J M, Roldan F J, et al. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides, 2017, 14(2): 743 doi: 10.1007/s10346-016-0723-5
|
[50] |
Turner D, Lucieer A, De Jong S M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens, 2015, 7(2): 1736 doi: 10.3390/rs70201736
|
[51] |
Peternel T, Kumelj ?, O?tir K, et al. Monitoring the Poto?ka planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides, 2017, 14(1): 395 doi: 10.1007/s10346-016-0759-6
|
[52] |
Niethammer U, James M R, Rothmund S, et al. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng Geol, 2012, 128: 2 doi: 10.1016/j.enggeo.2011.03.012
|
[53] |
Giordan D, Manconi A, Tannant D D, et al. UAV: Low-cost remote sensing for high-resolution investigation of landslides // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, 2015: 5344
|
[54] |
唐堯, 王立娟, 馬國超, 等. 基于“高分+”的金沙江滑坡災情監測與應用前景分析. 武漢大學學報: 信息科學版, 2019, 44(7):1082
Tang Y, Wang L J, Ma G C, et al. Disaster monitoring and application prospect analysis of the Jinsha River landslide based on “Gaofen+”. Geomat Inform Sci Wuhan Univ, 2019, 44(7): 1082
|
[55] |
葉偉林, 宿星, 魏萬鴻, 等. 無人機航測系統在滑坡應急中的應用. 測繪通報, 2017(9):70
Ye W L, Su X, Wei W H, et al. Application of UAV aerial photograph system in emergency rescue and relief for landslide. Bull Surv Mapp, 2017(9): 70
|
[56] |
李維煉, 朱軍, 朱秀麗, 等. 無人機遙感數據支持下滑坡VR場景探索分析方法. 武漢大學學報: 信息科學版, 2019, 44(7):1065
Li W L, Zhu J, Zhu X L, et al. An exploratory analysis method of VR scene in landslide based on UAV remote sensing data. Geomat Inform Sci Wuhan Univ, 2019, 44(7): 1065
|
[57] |
賈曙光, 金愛兵, 趙怡晴. 無人機攝影測量在高陡邊坡地質調查中的應用. 巖土力學, 2018, 39(3):1130
Jia S G, Jin A B, Zhao Y Q. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope. Rock Soil Mech, 2018, 39(3): 1130
|
[58] |
McLeod T, Samson C, Labrie M, et al. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica, 2013, 67(3): 173 doi: 10.5623/cig2013-036
|
[59] |
王棟, 鄒楊, 張廣澤, 等. 無人機技術在超高位危巖勘查中的應用. 成都理工大學學報: 自然科學版, 2018, 45(6):754
Wang D, Zou Y, Zhang G Z, et al. Application of photographic technique by unmanned aerial vehicle to dangerous rock exploration. J Chengdu Univ Technol Sci Technol Ed, 2018, 45(6): 754
|
[60] |
梁鑫, 范文, 蘇艷軍, 等. 秦嶺釩礦集中開采區隱蔽性地質災害早期識別研究. 災害學, 2019, 34(1):208
Liang X, Fan W, Su Y J, et al. Study on early identification technology of concealed geological hazards in vanadium mining area of Qinling. J Catastrophol, 2019, 34(1): 208
|
[61] |
Lee S, Choi Y. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosyst Eng, 2016, 19(4): 197 doi: 10.1080/12269328.2016.1162115
|
[62] |
Coops N C, Goodbody T R H, Cao L. Four steps to extend drone use in research. Nature, 2019, 572(7770): 433 doi: 10.1038/d41586-019-02474-y
|
[63] |
UAV Coach. Master list of drone laws (organized by state & country) [EB/OL]. (2019-08-21) [2019-09-04]. https://uavcoach.com/drone-laws/
|
[64] |
Sanz-Ablanedo E, Chandler J H, Rodríguez-Pérez J R, et al. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens, 2018, 10(10): 1606 doi: 10.3390/rs10101606
|
[65] |
Beretta F, Shibata H, Cordova R, et al. Topographic modelling using UAVs compared with traditional survey methods in mining. REM-Int Eng J, 2018, 71: 463 doi: 10.1590/0370-44672017710074
|