<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
ZHAI Zhen-yu, ZHANG Xiu-ling, LI Cong-ju. Research progress on MOFs/fiber materials for resistive gas sensors[J]. Chinese Journal of Engineering, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006
Citation: ZHAI Zhen-yu, ZHANG Xiu-ling, LI Cong-ju. Research progress on MOFs/fiber materials for resistive gas sensors[J]. Chinese Journal of Engineering, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006

Research progress on MOFs/fiber materials for resistive gas sensors

doi: 10.13374/j.issn2095-9389.2019.12.16.006
More Information
  • Corresponding author: E-mail congjuli@126.com
  • Received Date: 2019-12-16
  • Publish Date: 2020-09-20
  • Metal-organic frameworks (MOFs) are a new class of organic–inorganic hybrid materials that show great potential for gas adsorption and storage. However, the powder form of these materials limits the range of their applications. Integration of MOFs on polymer fiber scaffolds to increase the contact area between these frameworks and target molecules and improve the performance of the resulting material is expected to provide new application prospects in gas adsorption, membrane separation, catalysis, and toxic gas sensing. Electrochemical sensors with good flexibility and high sensitivity and selectivity are needed in environmental detection, disease diagnosis, food safety, and other fields. Flexible resistance sensors are sensitive, low cost, and can be produced on a large scale; thus, these sensors have received extensive attention from researchers. Preparing flexible resistance sensors with high sensitivity, high stability, and good wearing comfort is a current and popular area of research. In this paper, we summarized the research and application of MOFs materials combined with metal oxides, textiles and carbon-based conductive fiber materials in the field of resistance gas sensors. Metal oxides act as a conductive material in resistance sensors bearing a metal oxide-and-MOF design. In this design, MOFs play two roles. First, MOFs can wrap precious metals and form nanoparticles encasing these precious metals when calcined. Here, the precious metal functions as a catalyst while the MOF is used as a dispersant to distribute the metal evenly on the surface of the sensing material. Second, the MOFs are combined with the metal oxide by in situ growth or doping on the metal oxide surface. The MOF surface has a large specific surface area and numerous active sites that can bind with the target gas. Resistance sensing is achieved by changing the electronic distribution within the sensing material. When textiles and MOFs are combined, the resulting resistive sensing materials must have a certain electrical conductivity. However, common MOF materials have poor electrical conductivity. Therefore, developing a conductive MOF material in which 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexaaminotriphenylene (HATP) show strong sensing performance for NO, H2S, and H2O is necessary. Carbon nanotube fibers and MOF materials can also be combined to obtain resistive sensor materials. Carbon nanotube materials are characterized by cross contact at the nanoscale and have good mechanical and electrical conductive properties. Thus, they feature certain advantages over other materials when applied to flexible resistive sensors.

     

  • loading
  • [1]
    Zhao J J, Losego M D, Lemaire P C, et al. Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition. <italic>Adv Mater Interfaces</italic>, 2014, 1(4): 1400040 doi: 10.1002/admi.201400040
    [2]
    Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors. <italic>Chem</italic>, 2019, 5(8): 1938 doi: 10.1016/j.chempr.2019.04.013
    [3]
    Alrammouz R, Podlecki J, Abboud P, et al. A review on flexible gas sensors: from materials to devices. <italic>Sensors Actuat A-Phys</italic>, 2018, 284: 209 doi: 10.1016/j.sna.2018.10.036
    [4]
    Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. <italic>Adv Mater</italic>, 2016, 28(26): 5229 doi: 10.1002/adma.201506457
    [5]
    Zhan S, Li D M, Liang S F, et al. A novel flexible room temperature ethanol gas sensor based on SnO<sub>2</sub> doped poly-diallyldimethylammonium chloride. <italic>Sensors</italic>, 2013, 13(4): 4378 doi: 10.3390/s130404378
    [6]
    Tonezzer M, Lacerda R G. Zinc oxide nanowires on carbon microfiber as flexible gas sensor. <italic>Physica E</italic>, 2012, 44(6): 1098 doi: 10.1016/j.physe.2010.11.029
    [7]
    Lin J, Liang F, Lu X Y, et al. Modeling and designing fault-tolerance mechanisms for MPI-based mapreduce data computing framework // 2015 IEEE First International Conference on Big Data Computing Service and Applications. Redwood City, 2015: 176
    [8]
    Yang D J, Kamienchick I, Youn D Y, et al. Ultrasensitive and highly selective gas sensors based on electrospun SnO<sub>2</sub> nanofibers modified by Pd loading. <italic>Adv Funct Mater</italic>, 2010, 20(24): 4258 doi: 10.1002/adfm.201001251
    [9]
    Zhang X L, Fan W, Li H, et al. Extending cycling life of lithium–oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method. <italic>J Mater Chem A</italic>, 2018, 6(43): 21458 doi: 10.1039/C8TA07884J
    [10]
    Zhang X L, Fan W, Zhao S Y, et al. An efficient, bifunctional catalyst for lithium–oxygen batteries obtained through tuning the exterior Co<sup>2+</sup>/Co<sup>3+</sup> ratio of CoO<sub><italic>x</italic></sub> on N-doped carbon nanofibers. <italic>Catal Sci Technol</italic>, 2019, 9(8): 1998 doi: 10.1039/C9CY00477G
    [11]
    Yang W, Li N W, Zhao S Y, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. <italic>Adv Mater Technol</italic>, 2018, 3(2): 1700241 doi: 10.1002/admt.201700241
    [12]
    Koo W T, Choi S J, Kim S J, et al. Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. <italic>J Am Chem Soc</italic>, 2016, 138(40): 13431 doi: 10.1021/jacs.6b09167
    [13]
    Koo W T, Jang J S, Choi S J, et al. Metal-organic framework templated catalysts: dual sensitization of PdO–ZnO composite on hollow SnO<sub>2</sub> nanotubes for selective acetone sensors. <italic>ACS Appl Mater Interfaces</italic>, 2017, 9(21): 18069 doi: 10.1021/acsami.7b04657
    [14]
    Wu X N, Xiong S S, Gong Y, et al. MOF–SMO hybrids as a H<sub>2</sub>S sensor with superior sensitivity and selectivity. <italic>Sensors Actuat B</italic>:<italic>Chem</italic>, 2019, 292: 32 doi: 10.1016/j.snb.2019.04.076
    [15]
    Talin A A, Centrone A, Ford A C, et al. Tunable electrical conductivity in metal-organic framework thin film devices. <italic>Science</italic>, 2014, 343(6166): 66 doi: 10.1126/science.1246738
    [16]
    Shi J D, Liu S, Zhang L S, et al. Smart textile-integrated microelectronic systems for wearable applications. <italic>Adv Mater</italic>, 2020, 32(5): 1901958 doi: 10.1002/adma.201901958
    [17]
    Zhang Y Y, Yuan S, Feng X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. <italic>J Am Chem Soc</italic>, 2016, 138(18): 5785 doi: 10.1021/jacs.6b02553
    [18]
    Bradshaw D, Garai A, Huo J. Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. <italic>Chem Soc Rev</italic>, 2012, 41(6): 2344 doi: 10.1039/C1CS15276A
    [19]
    Denny Jr M S, Moreton J C, Benz L, et al. Metal–organic frameworks for membrane-based separations. <italic>Nat Rev Mater</italic>, 2016, 1(12): 16078 doi: 10.1038/natrevmats.2016.78
    [20]
    López-Maya E, Montoro C, Rodríguez-Albelo L M, et al. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. <italic>Angew Chem Int Ed</italic>, 2015, 54(23): 6790 doi: 10.1002/anie.201502094
    [21]
    Liu J X, W?ll C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. <italic>Chem Soc Rev</italic>, 2017, 46(19): 5730 doi: 10.1039/C7CS00315C
    [22]
    Li M Y, Dinc? M. Reductive electrosynthesis of crystalline metal-organic frameworks. <italic>J Am Chem Soc</italic>, 2011, 133(33): 12926 doi: 10.1021/ja2041546
    [23]
    Ozer R R, Hinestroza J P. One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. <italic>RSC Adv</italic>, 2015, 5(25): 19400 doi: 10.1039/C5RA90014J
    [24]
    Zhang J L, Ar D, Yu X J, et al. Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. <italic>Adv Mater</italic>, 2013, 25(33): 4631 doi: 10.1002/adma.201301626
    [25]
    Smith M K, Mirica K A. Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. <italic>J Am Chem Soc</italic>, 2017, 139(46): 16759 doi: 10.1021/jacs.7b08840
    [26]
    Hmadeh M, Lu Z, Liu Z, et al. New porous crystals of extended metal-catecholates. <italic>Chem Mater</italic>, 2012, 24(18): 3511 doi: 10.1021/cm301194a
    [27]
    Sheberla D, Sun L, Blood-Forsythe M A, et al. High electrical conductivity in Ni-3(2, 3, 6, 7, 10, 11-hexaiminotriphenyl-ene)(2), a semiconducting metal-organic graphene analogue. <italic>J Am Chem Soc</italic>, 2014, 136(25): 8859 doi: 10.1021/ja502765n
    [28]
    Rui K, Wang X S, Du M, et al. Dual-function metal–organic framework-based wearable fibers for gas probing and energy storage. <italic>ACS Appl Mater Interfaces</italic>, 2018, 10(3): 2837 doi: 10.1021/acsami.7b16761
    [29]
    Ghanbarian M, Zeinali S, Mostafavi A. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. <italic>Sensors Actuat B-Chem</italic>, 2018, 267: 381 doi: 10.1016/j.snb.2018.02.138
    [30]
    Choi S J, Choi H J, Koo W T, et al. Metal-organic framework-templated PdO-Co<sub>3</sub>O<sub>4</sub> nanocubes functionalized by SWCNTs: improved NO<sub>2</sub> reaction kinetics on flexible heating film. <italic>ACS Appl Mater Interfaces</italic>, 2017, 9(46): 40593 doi: 10.1021/acsami.7b11317
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (2674) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频