Citation: | WANG Yan-tao, LI Jing-liang, GU Run-ping. Flight operation risk prediction model based on the multivariate chaotic time series[J]. Chinese Journal of Engineering, 2020, 42(12): 1664-1673. doi: 10.13374/j.issn2095-9389.2019.12.09.002 |
[1] |
馮正霖. 以新發展理念引領新時代民航高質量發展. 人民論壇, 2019(5):6 doi: 10.3969/j.issn.1004-3381.2019.05.001
Feng Z L. Promote the high-quality development of civil aviation with the new development concept. People's Forum, 2019(5): 6 doi: 10.3969/j.issn.1004-3381.2019.05.001
|
[2] |
Bowen B D, Headley D E, Luedtke J R. A quantitative methodology for measuring airline quality. J Aviation/Aerospace Educ Res, 1992, 2(2): 27
|
[3] |
Lower M, Magott J, Skorupski J. Analysis of air traffic incidents using event trees with fuzzy probabilities. Fuzzy Sets Syst, 2016, 293(C): 50
|
[4] |
Kokangül A, Polat U, Dagsuyu C. A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Saf Sci, 2017, 91: 24 doi: 10.1016/j.ssci.2016.07.015
|
[5] |
FAA. Flight risk assessment tool[EB/OL]. Federal Aviation Administration Online (2007-08-02)[2018-08-31]. https://www.faa.gov/news/safety_briefing/2016/media/SE_Topic_16-12.pdf
|
[6] |
NATA. NATA’s risk assessment tool?RA Check[EB/OL]. National Air Transportation Association Online (2012-01-23)[2018-08-31]. https://www.acukwikalert.com/on-the-radar/2010/3/9/natas-ra-check-automated-risk-assessment-tool-launched-at-sa.html
|
[7] |
孫瑞山, 劉漢輝. 航空公司安全評估理論與實踐. 中國安全科學學報, 1999, 9(3):69 doi: 10.3969/j.issn.1003-3033.1999.03.014
Sun R S, Liu H H. Assessment theory and practice for airline safety. China Saf Sci J, 1999, 9(3): 69 doi: 10.3969/j.issn.1003-3033.1999.03.014
|
[8] |
王巖韜, 李蕊, 盧飛, 等. 基于多因素分析的航班運行風險評估體系. 天津工業大學學報, 2014, 33(3):84 doi: 10.3969/j.issn.1671-024X.2014.03.017
Wang Y T, Li R, Lu F, et al. Risk assessment system of flight operation based on multiple factor analysis. J Tianjin Polytech Univ, 2014, 33(3): 84 doi: 10.3969/j.issn.1671-024X.2014.03.017
|
[9] |
王巖韜, 趙嶷飛. 基于多算法協作的航班運行風險辨識研究. 中國安全科學學報, 2018, 28(6):166
Wang Y T, Zhao Y F. Research on flight operations risk identification based on multi-algorithm collaboration. China Saf Sci J, 2018, 28(6): 166
|
[10] |
PROSPEROFP7. Aviation sector collaborates to make ultra-safe travel even safer[EB/OL]. PROSPERO Online (2015-11-12)[2018.10.26]. http://www.prosperofp7.eu/news/36-aviation-sector-collaborates-to-make-ultra-safe-travel-even-safer
|
[11] |
Lalis A, Socha V, Kraus J, et al. Conditional and unconditional safety performance forecasts for aviation predictive risk management // 2018 IEEE Aerospace Conference. Big Sky, 2018
|
[12] |
Zhang X G, Mahadevans S. Ensemble machine learning models for aviation incident risk prediction. Decision Support Syst, 2019, 116: 48 doi: 10.1016/j.dss.2018.10.009
|
[13] |
王巖韜, 劉宏, 唐建勛, 等. 動態預測技術在航班運行風險中的應用. 控制與決策, 2019, 34(9):1946
Wang Y T, Liu H, Tang J X, et al. Dynamic prediction technology in the application of flight operation risk. Control Decision, 2019, 34(9): 1946
|
[14] |
黎敏, 徐金梧, 陽建宏, 等. 基于多變量相重構的混沌時間序列預測. 北京科技大學學報, 2008, 30(2):208 doi: 10.3321/j.issn:1001-053X.2008.02.021
Li M, Xu J W, Yang J H, et al. Prediction for chaotic time series based on phase reconstruction of multivariate time series. J Univ Sci Technol Beijing, 2008, 30(2): 208 doi: 10.3321/j.issn:1001-053X.2008.02.021
|
[15] |
方芬. 多變量混沌時間序列Volterra自適應實時預測. 系統工程與電子技術, 2009, 31(10):2476 doi: 10.3321/j.issn:1001-506X.2009.10.043
Fang F. Volterra adaptive real-time prediction of multivariate chaotic time series. Syst Eng Electron, 2009, 31(10): 2476 doi: 10.3321/j.issn:1001-506X.2009.10.043
|
[16] |
張春濤, 馬千里, 彭宏, 等. 基于條件熵擴維的多變量混沌時間序列相空間重構. 物理學報, 2011, 60(2):118
Zhang C T, Ma Q L, Peng H, et al. Multivariate chaotic time series phase space reconstruction based on extending dimension by conditional entropy. Acta Phys Sin, 2011, 60(2): 118
|
[17] |
侯公羽, 梁榮, 孫磊, 等. 基于多變量混沌時間序列的煤礦斜井TBM施工動態風險預測. 物理學報, 2014, 63(9):111
Hou G Y, Liang R, Sun L, et al. Risk analysis on long inclined-shaft construction in coalmine by TBM techniques based on multiple variables chaotic time series. Acta Phys Sin, 2014, 63(9): 111
|
[18] |
鐘儀華, 林旭旭, 劉雨鑫. 基于多元混沌時間序列的油田產量預測模型. 數學的實踐與認識, 2016, 46(6):99
Zhong Y H, Lin X X, Liu Y X. The oilfield output prediction model based on multivariate chaotic time series. Math Pract Theory, 2016, 46(6): 99
|
[19] |
杜柳青, 曾翠蘭, 余永維. 基于多元混沌時間序列的數控機床運動精度預測. 農業機械學報, 2017, 48(3):390 doi: 10.6041/j.issn.1000-1298.2017.03.050
Du L Q, Zeng C L, Yu Y W. Prediction of numerical control machine's motion precision based on multivariate chaotic time series. Trans Chin Soc Agric Mach, 2017, 48(3): 390 doi: 10.6041/j.issn.1000-1298.2017.03.050
|
[20] |
張淑清, 劉子玥, 何泓運, 等. 基于多變量加權一階局域混沌預測模型優化及應用. 計量學報, 2018, 39(1):77 doi: 10.3969/j.issn.1000-1158.2018.01.17
Zhang S Q, Liu Z Y, He H Y, et al. Optimization and application of weighted one-rank local chaos prediction model based on multi-variable. Acta Metrol Sin, 2018, 39(1): 77 doi: 10.3969/j.issn.1000-1158.2018.01.17
|
[21] |
黃發明, 殷坤龍, 楊背背, 等. 基于時間序列分解和多變量混沌模型的滑坡階躍式位移預測. 地球科學, 2018, 43(3):887
Huang F M, Yin K L, Yang B B, et al. Step-like displacement prediction of landslide based on time series decomposition and multivariate chaotic model. Earth Sci, 2018, 43(3): 887
|
[22] |
Coleman M E, Marks H M. Qualitative and quantitative risk assessment. Food Control, 1999, 10(4-5): 289 doi: 10.1016/S0956-7135(99)00052-3
|
[23] |
Takens F. Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics. Heidelberg: Springer-verlag, 1981: 366
|
[24] |
何曉群. 多元統計分析. 4版. 北京: 中國人民大學出版社, 2015
He X Q. Multivariate Statistical Analysis. 4th Ed. Beijing: China Renmin University Press, 2015
|
[25] |
姜雪瑩, 郭穎, 施惠元, 等. 基于TSA多變量非線性RBF神經網絡預測控制. 控制工程, 2019, 26(9):1655
Jiang X Y, Guo Y, Shi H Y, et al. Multivariable nonlinear RBF neural network predictive control based on TSA. Control Eng China, 2019, 26(9): 1655
|
[26] |
許美玲, 韓敏. 多元混沌時間序列的因子回聲狀態網絡預測模型. 自動化學報, 2015, 41(5):1042
Xu M L, Han M. Factor echo state network for multivariate chaotic time series prediction. Acta Autom Sin, 2015, 41(5): 1042
|