<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
WANG Zhi-ming, LIU Zhi-hui, HUANG Yang-ke, XING Yu-xiang. Efficient wagon number recognition based on deep learning[J]. Chinese Journal of Engineering, 2020, 42(11): 1525-1533. doi: 10.13374/j.issn2095-9389.2019.12.05.001
Citation: WANG Zhi-ming, LIU Zhi-hui, HUANG Yang-ke, XING Yu-xiang. Efficient wagon number recognition based on deep learning[J]. Chinese Journal of Engineering, 2020, 42(11): 1525-1533. doi: 10.13374/j.issn2095-9389.2019.12.05.001

Efficient wagon number recognition based on deep learning

doi: 10.13374/j.issn2095-9389.2019.12.05.001
More Information
  • The automatic recognition of a wagon number plays an important role in railroad transportation systems. However, the wagon number character only occupies a very small area of the entire wagon image, and it is often accompanied by uneven illumination, a complex background, image contamination, and character stroke breakage, which makes the high-precision automatic recognition difficult. In recent years, object detection algorithm based on deep learning has made great progress, and it provides a solid technical basis for us to improve the performance of the train number recognition algorithm. This paper proposes a two-phase efficient wagon number recognition algorithm based on the high-performance YOLOv3 object detection algorithm. The entire recognition process is divided into two phases. In the first phase, the region of the wagon number in an image is detected from a low-resolution global image; in the second stage, the characters are detected in a high-resolution local image, formed into the wagon number according to their spatial position, and the final wagon number is obtained after verification based on the recognition confidence of each character and international wagon number coding rules. In addition, we proposed a new deep learning network-pruning algorithm based on the batch normalize scale factor and filter correlation. The importance of every filter was computed by considering the correlation between filter weights and the scale factor generated via batch normalization. By pruning and retraining the region detection model and character detection model, the storage space occupation and computational complexity were reduced without sacrificing recognition accuracy (which is even slightly improved in our experiment). Finally, we tested the proposed two-phase wagon number recognition algorithm on 1072 images from practical engineering application scenarios, and the results show that the proposed algorithm achieves 96.9% of the overall correct ratio (here, “correct” means all 12 characters are detected and recognized correctly), and the average recognition time is only 191 ms.

     

  • loading
  • [1]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks // 26th Annual Conference on Neural Information Processing Systems. Lake Tahoe, 2012: 1097
    [2]
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436 doi: 10.1038/nature14539
    [3]
    廖健. 基于深度卷積神經網絡的貨車車號識別研究. 交通運輸工程與信息學報, 2016, 14(4):64 doi: 10.3969/j.issn.1672-4747.2016.04.010

    Liao J. Research on recognition of railway wagon numbers based on deep convolutional neural networks. J Transp Eng Inf, 2016, 14(4): 64 doi: 10.3969/j.issn.1672-4747.2016.04.010
    [4]
    Li H, Wang P, You M Y, et al. Reading car license plates using deep neural networks. Image Vision Comput, 2018, 72: 14 doi: 10.1016/j.imavis.2018.02.002
    [5]
    Li H, Wang P, Shen C H. Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Trans Intell Transp Syst, 2019, 20(3): 1126 doi: 10.1109/TITS.2018.2847291
    [6]
    Montazzolli S, Jung C. Real-time Brazilian license plate detection and recognition using deep convolutional neural networks // 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). Niterói, 2017: 52
    [7]
    Laroca R, Severo E, Zanlorensi L A, et al. A robust real-time automatic license plate recognition based on the YOLO detector // 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, 2018: 1
    [8]
    張強、李嘉鋒、卓力. 車輛識別技術綜述. 北京工業大學學報, 2018, 44(3):382

    Zhang Q, Li J F, Zhuo L. Review of Vehicle Recognition Technology. J Beijing Univ Technol, 2018, 44(3): 382
    [9]
    Zhao Z Q, Zheng P, Xu S T, et al. Object detection with deep learning: a review. IEEE Trans Neural Networks Learning Syst, 2019, 30(11): 3212 doi: 10.1109/TNNLS.2018.2876865
    [10]
    Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
    [11]
    Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 2117
    [12]
    He K M, Gkioxari G, Dollár P, et al. Mask R-CNN. [J/OL]. arXiv preprint (2018-01-24) [2019-12-15]. https://arxiv.org/abs/1703.06870
    [13]
    Lu X, Li B Y, Yue Y X, et al. Grid R-CNN plus: faster and better [J/OL]. arXiv preprint (2019-06-13) [2019-12-15]. https://arxiv.org/abs/1906.05688v1
    [14]
    Cai Z W, Vasconcelos N. Cascade R-CNN: high quality object detection and instance segmentation[J/OL]. arXiv preprint (2019-06-24) [2019-11-12]. https://arxiv.org/abs/1906.09756v1
    [15]
    Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector // European Conference on Computer Vision. Amsterdam, 2016: 21
    [16]
    Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 779
    [17]
    Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 2961
    [18]
    Zheng Z H, Wang P, Liu W, et al. Distance-IoU Loss: faster and better learning for bounding box regression [J/OL]. arXiv preprint (2019-11-19) [2019-12-15]. https://arxiv.org/abs/1911.08287
    [19]
    Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell, 2020, 42(2): 318 doi: 10.1109/TPAMI.2018.2858826
    [20]
    Shen Z Q, Liu Z, Li J G, et al. DSOD: Learning deeply supervised object detectors from scratch // Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017: 1919
    [21]
    Law H, Deng J. CornerNet: detecting objects as paired keypoints [J/OL]. arXiv preprint (2019-03-18) [2019-12-15]. https://arxiv.org/abs/1808.01244v2
    [22]
    Duan K W, Bai S, Xie L X, et al. CenterNet: Keypoint triplets for object detection [J/OL]. arXiv preprint (2019-04-19) [2019-12-15]. https://arxiv.org/abs/1904.08189v3
    [23]
    Rashwan A, Agarwal R, Kalra A, et al. MatrixNets: a new scale and aspect ratio aware architecture for object detection[J/OL]. arXiv preprint (2020-01-09) [2020-01-15]. https://arxiv.org/abs/2001.03194v1
    [24]
    Redmon J, Farhadi A. YOLOv3: an incremental improvement [J/OL]. arXiv preprint (2018-04-08) [2019-11-12]. https://arxiv.org/abs/1804.02767
    [25]
    Liu Z, Li J G, Shen Z Q, et al. Learning efficient convolutional networks through network slimming // 2017 IEEE International Conference on Computer Vision. Venice, 2017: 2755
    [26]
    Chen K, Wang J Q, Pang J M, et al. MMDetection: Open MMLab detection toolbox and benchmark [J/OL]. arXiv preprint (2019-06-17) [2019-11-12]. https://arxiv.org/abs/1906.07155v1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (2985) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频