<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
LIU Xuan, GUO Zhi-chao, XUE Ji-lai, WANG Zeng-jie, LI Xiang, ZHU Chang-wei, ZHANG Peng-ju. Ultrasonic refining mechanism of ternary phase in Al–Sc based alloys prepared through molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.11.28.007
Citation: LIU Xuan, GUO Zhi-chao, XUE Ji-lai, WANG Zeng-jie, LI Xiang, ZHU Chang-wei, ZHANG Peng-ju. Ultrasonic refining mechanism of ternary phase in Al–Sc based alloys prepared through molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.11.28.007

Ultrasonic refining mechanism of ternary phase in Al–Sc based alloys prepared through molten salt electrolysis

doi: 10.13374/j.issn2095-9389.2019.11.28.007
More Information
  • Corresponding author: E-mail: jx@ustb.edu.cn
  • Received Date: 2019-11-28
  • Publish Date: 2020-11-25
  • Aluminum alloys are widely used in cutting-edge technologies and emerging strategic industries, namely aerospace, high-speed rail transportation, electric vehicles, advanced functional materials, new energy storage, and conversion devices. The processability as well as the mechanical properties of aluminum alloys can be improved via the addition of trace scandium. The ultrasonically assisted molten salt electrolysis is a promising, short technical route for large-scale preparation of low-cost, Al–Sc-based alloys characterized by uniform and fine strengthening phases. At present, it is still unclear if that is the case for the ultrasonic refining mechanism of the Sc-bearing ternary phase. This study aims at clarifying the ultrasonic refining mechanism on the strengthening phase containing scandium. Two Al–Sc based alloys were prepared using ultrasonically assisted molten salt electrolysis while the effect of ultrasound on the morphology and size of the Sc-bearing ternary phase was studied using optical microscope, scanning electron microscope, and X-ray diffraction meter. The results show that the synergetic ultrasound facilitates the transformation of the ternary AlSiSc phase from the coarse rhombic tubes (~205 μm) to the short rod (40 μm). The cluster size of ternary AlCuSc phase is also greatly reduced from ~100 μm to ~30 μm. The ultrasonic refining mechanism is mainly related to the increase of the nucleation rate of the primary Al3Sc particles which are greatly refined and dispersed in the alloy melt before the solidification stage. The refinement of the Sc-bearing ternary phase is considered to be caused by the fine and disperse Al3Sc particles serving as nuclei. Furthermore, ultrasound can also aid the uniform distribution of solute field and prevent the precipitation of coarse Al3Sc phase. The effect of ultrasonic refinement of the ternary rhenium-containing phase is mainly present at the solidification stage after electrolysis.

     

  • loading
  • [1]
    田少鯤, 李靜媛, 張俊龍, 等. Sc對7056鋁合金組織和性能的影響. 工程科學學報, 2019, 41(10):1298

    Tian S K, Li J Y, Zhang J L, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy. Chin J Eng, 2019, 41(10): 1298
    [2]
    Qian Y, Xue J L, Wang Z J, et al. Mechanical properties evaluation of Zr addition in L12-Al3(Sc1–xZrx) using first-principles calculation. JOM, 2016, 68(5): 1293 doi: 10.1007/s11837-016-1880-7
    [3]
    Riva S, Yusenko K V, Lavery N P, et al. The scandium effect in multicomponent alloys. Int Mater Rev, 2016, 61(3): 203 doi: 10.1080/09506608.2015.1137692
    [4]
    Czerwinski F. Critical assessment 36: assessing differences between the use of cerium and scandium in aluminium alloying. Mater Sci Technol, 2020, 36(3): 255 doi: 10.1080/02670836.2019.1702775
    [5]
    Royset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev, 2005, 50(1): 19 doi: 10.1179/174328005X14311
    [6]
    李亮星, 王濤勝, 黃茜琳, 等. 熔鹽電解法制備鋁鈧中間合金研究進展. 材料導報, 2018, 32(21):3768 doi: 10.11896/j.issn.1005-023X.2018.21.013

    Li L X, Wang T S, Huang X L, et al. Research progress on the preparation of Al–Sc master alloy by molten salt electrolysis method. Mater Rev, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013
    [7]
    張城, 薛濟來, 劉軒, 等. 基于霍爾—埃魯特電解法制備鋁合金技術研究進展. 工程科學學報, 2019, 41(7):835

    Zhang C, Xue J L, Liu X, et al. Production of aluminum alloys in electrolysis cells based on Hall-Héroult process: a review. Chin J Eng, 2019, 41(7): 835
    [8]
    郭瑞, 曹文亮, 翟秀靜, 等. 熔鹽電解法制備Al–Sc應用合金的工藝研究. 稀有金屬, 2008, 32(5):645 doi: 10.3969/j.issn.0258-7076.2008.05.021

    Guo R, Cao W L, Zhai X J, et al. Preparation of Al–Sc application alloys by molten salt electrolysis method. Chin J Rare Met, 2008, 32(5): 645 doi: 10.3969/j.issn.0258-7076.2008.05.021
    [9]
    Harata M, Nakamura T, Yakushiji H, et al. Production of scandium and Al–Sc alloy by metallothermic reduction. Miner Process Extract Metall IMM Trans Sect C, 2008, 117(2): 95
    [10]
    Liu Q C, Xue J L, Zhu J, et al. Processing Al–Sc alloys at liquid aluminum cathode in KF-AlF3 molten salt. ECS Trans, 2013, 50(11): 483 doi: 10.1149/05011.0483ecst
    [11]
    Shtefanyuk Y, Mann V, Pingin V, et al. Production of Al–Sc alloy by electrolysis of cryolite-scandium oxide melts // Light Metals 2015. New Jersey: John Wiley & Sons, Inc., 2015: 589
    [12]
    Tian Z L, Lai Y Q, Zhang K, et al. Preliminary study on preparation of Al–Sc master alloy in Na3AlF6–K3AlF6–AlF3 melt // 7th International Symposium on High-Temperature Metallurgical Processing. New Jersey: John Wiley & Sons, Inc., 2016: 157
    [13]
    Wang Z J, Guan C Y, Liu Q C, et al. Formation of intermetallic phases in Al–Sc alloys prepared by molten salt electrolysis at elevated temperatures // 6th International Symposium on High-Temperature Metallurgical Processing. New Jersey: John Wiley & Sons, Inc., 2015: 215
    [14]
    Liu X, Xue J L, Guo Z C, et al. Segregation behaviors of Sc and unique primary Al3Sc in Al–Sc alloys prepared by molten salt electrolysis. J Mater Sci Technol, 2019, 35(7): 1422 doi: 10.1016/j.jmst.2019.02.002
    [15]
    Liu X, Guo Z C, Xue J L, et al. Effects of synergetic ultrasound on the Sc yield and primary Al3Sc in the Al–Sc alloy prepared by the molten salts electrolysis. Ultrason Sonochem, 2019, 52: 33 doi: 10.1016/j.ultsonch.2018.09.009
    [16]
    Guo Z C, Liu X, Xue J L. Fabrication of Al-Si-Sc alloy bearing AlSi2Sc2 phase using ultrasonically assisted molten salt electrolysis. J Alloys Compd, 2019, 797: 883 doi: 10.1016/j.jallcom.2019.05.133
    [17]
    郭志超, 劉軒, 薛濟來, 等. 超聲對熔鹽電解法制備Al–7Si–Sc合金組織的影響. 工程科學學報, 2019, 41(9):1135

    Guo Z C, Liu X, Xue J L, et al. Effects of ultrasound on the microstructure of Al–7Si–Sc alloy prepared via molten salt electrolysis. Chin J Eng, 2019, 41(9): 1135
    [18]
    Liu X, Guo Z C, Xue J L, et al. Microstructures and mechanical properties of the Al–Cu–Sc alloys prepared by ultrasound-assisted molten salt electrolysis. J Alloys Compd, 2020, 818: 152870 doi: 10.1016/j.jallcom.2019.152870
    [19]
    Raghavan V. Phase diagram updates and evaluations of the Al–Fe–Ta, Al–Ge–Ni, Al–Li–Zn, Al–Sc–Si and Al–Ta–Ti systems. J Phase Equilib Diff, 2013, 34(4): 328 doi: 10.1007/s11669-013-0239-9
    [20]
    Pandee P, Gourlay C M, Belyakov S A, et al. AlSi2Sc2 intermetallic formation in Al–7Si–0.3Mg–xSc alloys and their effects on as-cast properties. J Alloys Compd, 2018, 731: 1159 doi: 10.1016/j.jallcom.2017.10.125
    [21]
    Bo H, Liu L B, Jin Z P. Thermodynamic analysis of Al–Sc, Cu–Sc and Al–Cu–Sc system. J Alloys Compd, 2010, 490(1-2): 318 doi: 10.1016/j.jallcom.2009.10.003
    [22]
    Raghavan V. Al–Cu–Sc (Aluminum-Copper-Scandium). J Phase Equilib Diff, 2010, 31(6): 554 doi: 10.1007/s11669-010-9771-z
    [23]
    戴永年. 二元合金相圖集. 北京: 科學出版社, 2009

    Dai Y N. Binary Alloys Phase Diagrams. Beijing: Science Press, 2009
    [24]
    Liu X, Zhang C, Zhang Z Q, et al. The role of ultrasound in hydrogen removal and microstructure refinement by ultrasonic argon degassing process. Ultrason Sonochem, 2017, 38: 455 doi: 10.1016/j.ultsonch.2017.03.041
    [25]
    Liu X, Xue J L, Zhao Q, et al. Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process. Ultrason Sonochem, 2018, 41: 600 doi: 10.1016/j.ultsonch.2017.10.026
    [26]
    徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9):1270

    Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270
    [27]
    商兵, 蔣日鵬, 李曉謙, 等. 超聲外場對不同溫控狀態下ZL205A鋁合金凝固規律的影響. 工程科學學報, 2019, 41(8):1007

    Shang B, Jiang R P, Li X Q, et al. Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states. Chin J Eng, 2019, 41(8): 1007
    [28]
    鐘貞濤, 李瑞卿, 李曉謙, 等. 超聲處理對2219大規格鋁錠微觀組織與宏觀偏析的影響. 工程科學學報, 2017, 39(9):1347

    Zhong Z T, Li R Q, Li X Q, et al. Effect of ultrasonication on the microstructure and macrosegregation of a large 2219 aluminum ingot. Chin J Eng, 2017, 39(9): 1347
    [29]
    Liu X, Zhang J F, Li H Y, et al. Electrical resistivity behaviors of liquid Pb–Sn binary alloy in the presence of ultrasonic field. Ultrasonics, 2015, 55: 6 doi: 10.1016/j.ultras.2014.07.008
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1791) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频