Citation: | LIU Juan-hong, ZHOU Zai-bo, WU Ai-xiang, WANG Yi-ming. Preparation and hydration mechanism of low concentration Bayer red mud filling materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001 |
[1] |
Khairul M A, Zanganeh J, Moghtaderi B. The composition, recycling and utilization of Bayer red mud. Resour Conserv Recycl, 2019, 141: 483 doi: 10.1016/j.resconrec.2018.11.006
|
[2] |
劉曉明, 唐彬文, 尹海峰, 等. 赤泥–煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438
Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud–coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438
|
[3] |
Liu C L, Ma S H, Zheng S L, et al. Combined treatment of red mud and coal fly ash by a hydro-chemical process. Hydrometallurgy, 2018, 175: 224 doi: 10.1016/j.hydromet.2017.11.005
|
[4] |
Liu Z B, Li H X. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy, 2015, 155: 29 doi: 10.1016/j.hydromet.2015.03.018
|
[5] |
Wang L, Chen L, Tsang D C W, et al. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environ Int, 2019, 133: 105247 doi: 10.1016/j.envint.2019.105247
|
[6] |
柳曉, 韓躍新, 何發鈺, 等. 赤泥的危害及其綜合利用研究現狀. 金屬礦山, 2018, 47(11):7
Liu X, Han Y X, He F Y, et al. Research status on hazards and comprehensive utilization of red mud. Met Mine, 2018, 47(11): 7
|
[7] |
Liu S H, Guan X M, Zhang S S, et al. Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceram Int, 2017, 43(15): 13004 doi: 10.1016/j.ceramint.2017.07.036
|
[8] |
Lu G Z, Zhang T A, Ma L N, et al. Utilization of Bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy, 2019, 188: 248 doi: 10.1016/j.hydromet.2019.05.018
|
[9] |
劉英, 倪文, 黃曉燕, 等. 拜耳法低鐵赤泥在電石渣-脫硫石膏體系中的水化硬化特性. 材料導報, 2016, 30(14):120
Liu Y, Ni W, Huang X Y, et al. Characteristics of hydration and hardening red mud of Bayer process in carbide slag-flue desulfurization gypsum system. Mater Rev, 2016, 30(14): 120
|
[10] |
Li Y C, Min X B, Ke Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manage, 2019, 83: 202 doi: 10.1016/j.wasman.2018.11.019
|
[11] |
Hu W, Nie Q K, Huang B S, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J Clean Prod, 2018, 186: 799 doi: 10.1016/j.jclepro.2018.03.086
|
[12] |
高術杰, 倪文, 祝麗萍, 等. 脫硫石膏對赤泥–礦渣膠結充填料強度性能的影響. 中南大學學報: 自然科學版, 2013, 44(6):2259
Gao S J, Ni W, Zhu L P, et al. Effect of gypsum on strength performance of cemented backfilling materials of red mud-slag system. J Cent South Univ Sci Technol, 2013, 44(6): 2259
|
[13] |
陳蛟龍, 張娜, 李恒, 等. 赤泥基似膏體充填材料水化特性研究. 工程科學學報, 2017, 39(11):1640
Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640
|
[14] |
吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
|
[15] |
Hou C, Zhu W C, Yan B X, et al. Influence of binder content on temperature and internal strain evolution of early age cemented tailings backfill. Construct Build Mater, 2018, 189: 585 doi: 10.1016/j.conbuildmat.2018.09.032
|
[16] |
Liu J H, Wu R D, Wu A X, et al. Bleeding characteristics and improving mechanism of self-flowing tailings filling slurry with low concentration. Minerals, 2017, 7(8): 131 doi: 10.3390/min7080131
|
[17] |
Nath S K, Kumar S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Construct Build Mater, 2020, 233: 117294 doi: 10.1016/j.conbuildmat.2019.117294
|
[18] |
Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud–slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759
|
[19] |
大連理工大學無機化學教研室. 無機化學. 5版. 北京: 高等教育出版社, 2006
Department of inorganic chemistry, Dalian University of Technology. Inorganic Chemistry. 5th Ed. Beijing: Higher Education Press, 2006
|
[20] |
Zhou X X, Shen J M. Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer. Construct Build Mater, 2020, 242: 118168 doi: 10.1016/j.conbuildmat.2020.118168
|
[21] |
肖力光, 張洪磊. 新型復合早強劑對混凝土(砂漿)力學性能的影響及機理分析. 硅酸鹽通報, 2018, 37(7):2115
Xiao L G, Zhang H L. Influence of new composite early strength agent on mechanical properties of concrete(mortar) and its mechanism analysis. Bull Chin Ceram Soc, 2018, 37(7): 2115
|
[22] |
邱軼兵, 王慶平. NaSO4激發粉煤灰火山灰活性研究. 材料導報, 2013, 27(12):121 doi: 10.3969/j.issn.1005-023X.2013.12.029
Qiu Y B, Wang Q P. Study on the pozzolanic activity of fly ash activated by NaSO4. Mater Rev, 2013, 27(12): 121 doi: 10.3969/j.issn.1005-023X.2013.12.029
|
[23] |
劉鵬飛, 蘭明章, 項斌峰, 等. 羥丙基甲基纖維素醚對機噴水泥砂漿性能的影響. 新型建筑材料, 2016, 43(7):49 doi: 10.3969/j.issn.1001-702X.2016.07.013
Liu P F, Lan M Z, Xiang B F, et al. Influence of hydroxypropyl methyl cellulose ether on properties of machine spraying mortar. New Build Mater, 2016, 43(7): 49 doi: 10.3969/j.issn.1001-702X.2016.07.013
|
[24] |
姜關照, 吳愛祥, 王貽明, 等. 復合激發劑對銅爐渣活性影響及充填材料制備. 工程科學學報, 2017, 39(9):1305
Jiang G Z, Wu A X, Wang Y M, et al. Effect of compound activator on copper slag activity and preparation of filling materials. Chin J Eng, 2017, 39(9): 1305
|
[25] |
Keeley P M, Rowson N A, Johnson T P, et al. The effect of the extent of polymerization of a slag structure on the strength of alkali-activated slag binders. Int J Miner Process, 2017, 164: 37 doi: 10.1016/j.minpro.2017.05.007
|
[26] |
Kwan S, La Rosa-Thompson J, Grutzeck M W. Structure and phase relations of aluminum-substituted calcium silicate hydrate. J Am Ceram Soc, 1996, 79(4): 967 doi: 10.1111/j.1151-2916.1996.tb08533.x
|