Citation: | LU Bin, CHEN Fu-rong, LIU Wei-jian, ZHI Jian-guo. Effect of cerium on welding performance of 700 MPa high-strength steel used in construction machinery[J]. Chinese Journal of Engineering, 2020, 42(11): 1481-1487. doi: 10.13374/j.issn2095-9389.2019.11.21.004 |
[1] |
Lou H N, Wang C, Wang B X, et al. Effect of Ti–Mg–Ca treatment on properties of heat-affected zone after high heat input welding. J Iron Steel Res Int, 2019, 26(5): 501 doi: 10.1007/s42243-018-0091-6
|
[2] |
Lu J L, Cheng G G, Tan B, et al. Effect of Zr, Al addition on characteristics of MnS and formation of intragranular ferrite in non-quenched and tempered steel. ISIJ Int, 2018, 58(5): 921 doi: 10.2355/isijinternational.ISIJINT-2017-617
|
[3] |
Wan X L, Wu K M, Huang G, et al. In situ observations of the formation of fine-grained mixed microstructures of acicular ferrite and bainite in the simulated coarse-grained heated-affected zone. Steel Res Int, 2014, 85(2): 243 doi: 10.1002/srin.201200313
|
[4] |
Genichi S. Progress of high performance steel plates with excellent HAZ toughness. Nippon Steel Sumitomo Met Techl Rep, 2018, 119: 22
|
[5] |
Kazuhiro F, Ken-ichi Y, Yasuhiro S, et al. High strength TMCP steel plate for offshore structure with excellent HAZ toughness at welded joints. Nippon Steel Sumitomo Met Techl Rep, 2015, 110: 43
|
[6] |
Nakashima K, Hase K, Endo S, et al. Development of YP390MPa steel plate for shipbuilding with superior low temperature toughness for large heat input welding // The Twenty-fourth International Ocean and Polar Engineering Conference. Busan, 2014: ISOPE-I-14-569
|
[7] |
Ichimiya K, Hase K, Endo S, et al. Offshore structural steel plates for extreme low temperature service with excellent HAZ toughness // Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, 2014: V005T03A027
|
[8] |
Ichimiya K, Hase K, Endo S, et al. Steel plates with excellent HAZ toughness for offshore structure // Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, 2013: V003T03A021
|
[9] |
Kato T, Sato S, Ohta H, et al. Effects of Ca addition on formation behavior of TiN particles and HAZ toughness in large-heat-input welding. Kobelco Technol Rev, 2011, 30: 76
|
[10] |
陳曉, 卜勇, 習天輝. 武鋼大線能量焊接系列鋼的研發進展. 中國材料進展, 2011, 30(12):34
Chen X, Bu Y, Xi T H. Progress on research and development of large heat input welding steel series in WISCO. Mater China, 2011, 30(12): 34
|
[11] |
Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y
|
[12] |
Shi M H, Yuan X G, Huang H J, et al. Effect of Zr addition on the microstructure and toughness of coarse-grained heat-affected zone with high-heat input welding thermal cycle in low-carbon steel. J Mater Eng Perform, 2017, 26(7): 3160 doi: 10.1007/s11665-017-2758-8
|
[13] |
Xu L Y, Yang J, Wang R Z, et al. Effect of welding heat input on microstructure and toughness of heated-affected zone in steel plate with Mg deoxidation. Steel Res Int, 2017, 88(12): 1700157 doi: 10.1002/srin.201700157
|
[14] |
Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures. Materials, 2016, 9(6): 417 doi: 10.3390/ma9060417
|
[15] |
Xin W B, Song B, Song M M, et al. Effect of cerium on characteristic of inclusions and grain boundary segregation of arsenic in iron melts. Steel Res Int, 2015, 86(12): 1430 doi: 10.1002/srin.201400332
|
[16] |
Liu H L, Liu C J, Jiang M F. Effect of rare earths on impact toughness of a low-carbon steel. Mater Des, 2012, 33: 306 doi: 10.1016/j.matdes.2011.06.042
|
[17] |
常立忠, 高崗, 鄭福舟, 等. 稀土-鎂復合處理對GCr15軸承鋼中夾雜物的影響. 工程科學學報, 2019, 41(6):763
Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763
|
[18] |
Thewlis G. Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels. Mater Sci Technol, 2006, 22(2): 153 doi: 10.1179/026708306X81432
|
[19] |
Yu S F, Yan N, Chen Y. Inclusions and microstructure of Ce-added weld metal coarse grain heat-affected zone in twin-wire submerged-arc welding. J Mater Eng Perform, 2016, 25(6): 2445 doi: 10.1007/s11665-016-2069-5
|
[20] |
Yan H H, Hu Y, Zhao D W. The influence of rare earth elements on phase transformation in 25Mn steel during continuous heating. Metall Mater Trans A, 2018, 49(11): 5271 doi: 10.1007/s11661-018-4891-x
|
[21] |
Li Y D, Liu C J, Li C L, et al. A coupled thermodynamic model for prediction of inclusions precipitation during solidification of heat-resistant steel containing cerium. J Iron Steel Res Int, 2015, 22(6): 457 doi: 10.1016/S1006-706X(15)30027-3
|
[22] |
林勤, 葉文, 李栓祿. 鋼中稀土固溶規律及作用研究. 中國稀土學報, 1989, 7(2):54 doi: 10.3321/j.issn:1000-4343.1989.02.012
Lin Q, Ye W, Li S L. Rare earth dissolved in solid solution of steel and its effect micro structures. J Chin Soc Rare Earths, 1989, 7(2): 54 doi: 10.3321/j.issn:1000-4343.1989.02.012
|
[23] |
Gao J Z, Fu P X, Liu H W, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel. Metals, 2015, 5(1): 383 doi: 10.3390/met5010383
|
[24] |
Zhao W X, Wu Y, Jiang S H, et al. Micro-alloying effects of yttrium on recrystallization behavior of an alumina-forming austenitic stainless steel. J Iron Steel Res Int, 2016, 23(6): 553 doi: 10.1016/S1006-706X(16)30087-5
|
[25] |
Tomita Y. Effect of microstructure on plane-strain fracture toughness of AISI 4340 steel. Metall Mater Trans A, 1988, 19(10): 2513 doi: 10.1007/BF02645479
|