Citation: | ZHAO Xi, CHEN Ying-xue, ZENG Xian, GONG Xing, ZHANG Yong, YIN Zhen-guo, YAN Qing-zhi. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application[J]. Chinese Journal of Engineering, 2020, 42(11): 1488-1498. doi: 10.13374/j.issn2095-9389.2019.11.19.002 |
[1] |
Alemberti A. The lead fast reactor: an opportunity for the future? Engineering, 2016, 2(1): 59 doi: 10.1016/J.ENG.2016.01.022
|
[2] |
Allen T R, Crawford D C. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Installations, 2007: 097486
|
[3] |
Allen T R, Sridharan K, Tan L, et al. Materials challenges for generation IV nuclear energy systems. Nucl Technol, 2008, 162(3): 342 doi: 10.13182/NT08-A3961
|
[4] |
Fazio C, Sobolev V, Aerts A, et al. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies. 2015 Ed. Issy-les-Moulineaux: OECD, 2015
|
[5] |
Zhang J S. A review of steel corrosion by liquid lead and lead–bismuth. Corros Sci, 2009, 51(6): 1207 doi: 10.1016/j.corsci.2009.03.013
|
[6] |
汪家梅, Farzin Arjmand, 杜東海, 等. 壓水堆一回路主管道316L不銹鋼的電化學腐蝕行為. 工程科學學報, 2017, 39(9):1355
Wang J M, Farzin A, Du D H, et al. Electrochemical corrosion behaviors of 316L stainless steel used in PWR primary pipes. Chin J Eng, 2017, 39(9): 1355
|
[7] |
Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead–bismuth. J Nucl Mater, 2001, 295(2-3): 149 doi: 10.1016/S0022-3115(01)00570-0
|
[8] |
趙熹, 燕青之, 曾獻, 等. 熔鑄ODS鋼液態鉛鉍腐蝕行為初步研究. 中國核科學技術進展報告, 2019, 6:92
Zhao X, Yan Q Z, Zeng X, et al. Preliminary research on corrosion behavior of vacuum smelting-casting ODS steel in lead-bismuth eutectic. Progr Rep China Nucl Sci Technol, 2019, 6: 92
|
[9] |
Chernov V M, Kardashev B K, Moroz K A. Low-temperature embrittlement and fracture of metals with different crystal lattices–Dislocation mechanisms. Nucl Mater Energy, 2016, 9: 496 doi: 10.1016/j.nme.2016.02.002
|
[10] |
Gabriele F D, Amore S, Scaiola C, et al. Corrosion behaviour of 12Cr-ODS steel in molten lead. Nucl Eng Des, 2014, 280: 69 doi: 10.1016/j.nucengdes.2014.09.030
|
[11] |
Xu Y L, Zhang J Q, Chu F M, et al. Compatibility of 9Cr2WVTa and 12CrWTi-ODS steel with flowing Pb. Ann Rep China Inst Atom Energy, 2008: 4
|
[12] |
Schroer C, Konys J. Quantification of the long-term performance of steels T91 and 316L in oxygen-containing flowing lead-bismuth eutectic at 550 ℃. J Eng Gas Turbines Power, 2010, 132(8): 082901 doi: 10.1115/1.4000364
|
[13] |
Schroer C, Wedemeyer O, Novotny J, et al. Performance of 9% Cr steels in flowing lead-bismuth eutectic at 450 and 550 C, and 10–6 mass% dissolved oxygen. Nucl Eng Des, 2014, 280: 661 doi: 10.1016/j.nucengdes.2014.01.023
|
[14] |
Zhang J S. Long-term behaviors of oxide layer in liquid lead–bismuth eutectic (LBE), Part I: model development and validation. Oxid Met, 2013, 80(5-6): 669 doi: 10.1007/s11085-013-9450-7
|
[15] |
Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal. Mater Sci Eng A, 2014, 608: 242 doi: 10.1016/j.msea.2014.04.082
|
[16] |
Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement. Corrosion, 2019, 75(1): 42 doi: 10.5006/2904
|
[17] |
Long B, Tong Z, Groschel F, et al. Liquid Pb–Bi embrittlement effects on the T91 steel after different heat treatments. J Nucl Mater, 2008, 377(1): 219 doi: 10.1016/j.jnucmat.2008.02.050
|
[18] |
Van den Bosch J, Bosch R W, Sapundjiev D, et al. Liquid metal embrittlement susceptibility of ferritic–martensitic steel in liquid lead alloys. J Nucl Mater, 2008, 376(3): 322 doi: 10.1016/j.jnucmat.2008.02.008
|
[19] |
Auger T, Lorang G. Liquid metal embrittlement susceptibility of T91 steel by lead–bismuth. Scripta Mater, 2005, 52(12): 1323 doi: 10.1016/j.scriptamat.2005.02.027
|
[20] |
Van den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels. J Nucl Mater, 2012, 429(1-3): 105 doi: 10.1016/j.jnucmat.2012.05.017
|
[21] |
楊旭, 廖波, 劉堅, 等. 中國低活化馬氏體鋼在液態Pb–Bi中的脆化現象. 金屬學報, 2017, 53(5):513 doi: 10.11900/0412.1961.2016.00576
Yang X, Liao B, Liu J, et al. Embrittlement phenomenon of China low activation martensitic steel in liquid Pb–Bi. Acta Metall Sin, 2017, 53(5): 513 doi: 10.11900/0412.1961.2016.00576
|
[22] |
Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead–bismuth eutectic at 160–450 ℃. J Nucl Mater, 2016, 468: 289 doi: 10.1016/j.jnucmat.2015.06.021
|
[23] |
Chen Y X, Yan Q Z, Zhang X X, et al. Microstructure characteristics and properties of yttrium-bearing 9Cr ferritic-martensitic steel cladding tubes. Mater Res Express, 2019, 6(9): 0965c6 doi: 10.1088/2053-1591/ab332e
|
[24] |
Dai Y, Long B, Groeschel F. Slow strain rate tensile tests on T91 in static lead–bismuth eutectic. J Nucl Mater, 2006, 356(1-3): 222 doi: 10.1016/j.jnucmat.2006.05.039
|
[25] |
Shchukin E D. Physical–chemical mechanics in the studies of Peter A. Rehbinder and his school. Colloids Surf A, 1999, 149(1-3): 529 doi: 10.1016/S0927-7757(98)00607-4
|
[26] |
Klecka J, Gabriele F D, Hojna A. Mechanical properties of the steel T91 in contact with lead. Nucl Eng Des, 2015, 283: 131 doi: 10.1016/j.nucengdes.2014.10.004
|