Citation: | ZHAO Qi-yue, ZHAO Jin-bin, LIU Yan-ning, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Corrosion behavior of PH13-8Mo stainless steel after long-term exposure to semi-rural atmosphere[J]. Chinese Journal of Engineering, 2021, 43(3): 400-408. doi: 10.13374/j.issn2095-9389.2019.11.08.001 |
[1] |
張良, 雍岐龍, 梁劍雄, 等. PH13-8Mo高強不銹鋼在不同溫度時效后的析出相及其對力學性能的影響. 機械工程材料, 2017, 41(3):19 doi: 10.11973/jxgccl201703004
Zhang L, Yong Q L, Liang J X, et al. Precipitated phases and effects of they on mechanical properties of PH13-8Mo high strength stainless steel after aging at different temperature. Mater Mech Eng, 2017, 41(3): 19 doi: 10.11973/jxgccl201703004
|
[2] |
Guo Z, Sha W, Vaumousse D. Microstructural evolution in a PH13-8 stainless steel after ageing. Acta Mater, 2003, 51(1): 101
|
[3] |
Li X Y, Fan C H, Wu Q L, et al. Effect of solution pH, Cl? concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments. J Iron Steel Res Int, 2017, 24(12): 1238
|
[4] |
Munn P, Andersson B. Hydrogen embrittlement of PH13-8Mo steel in simulated real-life tests and slow strain rate tests. Corrosion, 1990, 46(4): 286
|
[5] |
Yue C X, Zhang L W, Liao S L, et al. Research on the dynamic recrystallization behavior of GCr15 steel. Mater Sci Eng A, 2009, 499(1-2): 177
|
[6] |
Cao C, Cheung M M S. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Constr Build Mater, 2014, 51: 75
|
[7] |
Carmezim M J, Sim?es A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros Sci, 2005, 47(3): 581
|
[8] |
駱鴻, 李曉剛, 肖葵, 等. 304不銹鋼在西沙海洋大氣環境中的腐蝕行為. 北京科技大學學報, 2013, 35(3):332
Luo H, Li X G, Xiao K, et al. Corrosion behavior of 304 stainless steel in the marine atmospheric environment of Xisha islands. J Univ Sci Technol Beijing, 2013, 35(3): 332
|
[9] |
董超芳, 駱鴻, 肖葵, 等. 316L不銹鋼在西沙海洋大氣環境下的腐蝕行為評估. 四川大學學報(工程科學版), 2012, 44(3):179
Dong C F, Luo H, Xiao K, et al. Evaluation of corrosion behavior of 316L stainless steel exposed in marine atmosphere of Xisha islands. J Sichuan Univ Eng Sci Ed, 2012, 44(3): 179
|
[10] |
Wallinder D, Wallinder I O, Leygraf C. Influence of surface treatment of type 304L stainless steel on atmospheric corrosion resistance in urban and marine environments. Corrosion, 2003, 59(3): 220
|
[11] |
Button H E, Simm D W. The influence of particulate matter on the corrosion behaviour of type 316 stainless steel. Anti-Corros Methods Mater, 1985, 32(6): 8
|
[12] |
Cui Z Y, Chen S S, Wang L W, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater containing thiosulfate. J Electrochem Soc, 2017, 164(13): C856
|
[13] |
Goutier F, Stéphane V, Laborde E, et al. 304L stainless steel oxidation in carbon dioxide: An XPS study. J Alloys Compd, 2011, 509(7): 3246
|
[14] |
王海人, 石日華, 屈鈞娥, 等. 不銹鋼植酸鈍化工藝及其耐腐蝕性能研究. 材料工程, 2012(11):77
Wang H R, Shi R H, Qu J E, et al. Research on phytic acid passivation technology of stainless steel and corrosion resistance. J Mater Eng, 2012(11): 77
|
[15] |
宋鵬程, 柳文波, 劉璐, 等. Fe?13Cr?5Ni馬氏體不銹鋼在連續加熱過程中兩相區的奧氏體生長行為. 工程科學學報, 2017, 39(1):68
Song P C, Liu W B, Liu L, et al. Austenite growth behavior of Fe?13Cr?5Ni martensitic stainless steel under continuous heating. Chin J Eng, 2017, 39(1): 68
|
[16] |
Wang L, Dong C F, Man C, et al. Enhancing the corrosion resistance of selective laser melted 15-5PH martensite stainless steel via heat treatment. Corros Sci, 2020, 166: 108427
|
[17] |
舒瑋, 李俊, 廉曉潔, 等. 熱處理對奧氏體不銹鋼00Cr24Ni13鑄坯高溫熱塑性的影響. 工程科學學報, 2015, 37(2):190
Shu W, Li J, Lian X J, et al. Effect of heat treatment on the high temperature ductility of 00Cr24Ni13 austenitic stainless steel casting billets. Chin J Eng, 2015, 37(2): 190
|
[18] |
Vignal V, Ringeval S, Thiébaut S, et al. Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment. Corros Sci, 2014, 85: 42
|
[19] |
Cheng X Q, Li X G, Dong C F. Study on the passive film formed on 2205 stainless steel in acetic acid by AAS and XPS. Int J Miner Metall Mater, 2009, 16(2): 170
|
[20] |
Clayton C R, Lu Y C. A bipolar model of the passivity of stainless steel: the role of Mo addition. J Electrochem Soc, 1986, 133(12): 2465
|
[21] |
Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating. Corros Sci, 2009, 51(9): 2242
|
[22] |
Hu Y B, Dong C F, Sun M, et al. Effects of solution pH and Cl? on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments. Corros Sci, 2011, 53(12): 4159
|
[23] |
Luo H, Wang X Z, Dong C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution. Corros Sci, 2017, 124: 178
|
[24] |
Mischler S, Vogel A, Mathieu H J, et al. The chemical composition of the passive film on Fe?24Cr and Fe?24Cr?11Mo studied by AES. Corros Sci, 1991, 32(9): 925
|
[25] |
于陽, 盧琳, 李曉剛. 微區電化學技術在薄液膜大氣腐蝕中的應用. 工程科學學報, 2018, 40(6):649
Yu Y, Lu L, Li X G. Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer. Chin J Eng, 2018, 40(6): 649
|
[26] |
Wang J R, Bai Z H, Xiao K, et al. Influence of atmospheric particulates on initial corrosion behavior of printed circuit board in pollution environments. Appl Surf Sci, 2019, 467-468: 889
|
[27] |
Szklarska-Smialowska Z. Mechanism of pit nucleation by electrical breakdown of the passive film. Corros Sci, 2002, 44(5): 1143
|