Citation: | WANG Yu-bin, WANG Yong, CHEN Xuan, WU Xiao-chun. Machinability analysis of microstructures in pre-hardening plastic mold steel 718[J]. Chinese Journal of Engineering, 2020, 42(10): 1343-1351. doi: 10.13374/j.issn2095-9389.2019.11.06.001 |
[1] |
Min Y A, Yang Y P, Zhang Z, et al. Study on machinability of pre-hardened plastic mould steel. Adv Mater Res, 2013, 690-693: 2501 doi: 10.4028/www.scientific.net/AMR.690-693.2501
|
[2] |
Hoseiny H, Caballero F G, Hogman B, et al. The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel. J Mater Sci, 2012, 47(8): 3613 doi: 10.1007/s10853-011-6208-y
|
[3] |
Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel. Tribol Int, 2017, 115: 108 doi: 10.1016/j.triboint.2017.05.028
|
[4] |
Nomani J, Pramanik A, Hilditch T, et al. Chip formation mechanism and machinability of wrought duplex stainless steel alloys. Int J Adv Manuf Technol, 2015, 80: 1127 doi: 10.1007/s00170-015-7113-3
|
[5] |
Hoseiny H, HoGman B, Andrén H, et al. The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels. Int J Mater Res, 2013, 104(8): 748 doi: 10.3139/146.110926
|
[6] |
章順虎. 1CrMn2MoVTiB非調質塑料模具鋼使用性能的研究[學位論文]. 沈陽: 東北大學, 2010
Zhang S H. Study on 1CrMn2MoVTiB Non-Quenched and Tempered Plastic Mould Steel[Dissertation]. Shenyang: Northeastern University, 2010
|
[7] |
Hoseiny H, H?gman B, Klement U, et al. Machinability evaluation of pre-hardened plastic mould steels. Int J Machin Machinab Mater, 2012, 11(4): 327
|
[8] |
Huang W M, Zhao J, Niu J T, et al. Comparison in surface integrity and fatigue performance for hardened steel ball-end milled with different milling speeds. Procedia CIRP, 2018, 71: 267 doi: 10.1016/j.procir.2018.05.059
|
[9] |
Xavior M A, Manohar M, Madhukar P M, et al. Experimental investigation of work hardening, residual stress and microstructure during machining Inconel 718. J Mech Sci Technol, 2017, 31(10): 4789 doi: 10.1007/s12206-017-0926-2
|
[10] |
Garcia-Mateo C, Peet M, Caballero F G, et al. Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol, 2004, 20(7): 814 doi: 10.1179/026708304225017355
|
[11] |
Zhang Z, Wu X C, Zhou Q, et al. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds. Int J Miner Metall Mater, 2015, 22(8): 842 doi: 10.1007/s12613-015-1141-8
|
[12] |
Fujita N, Ishikawa N, Roters F, et al. Experimental–numerical study on strain and stress partitioning in bainitic steels with martensite–austenite constituents. Int J Plast, 2018, 104: 39 doi: 10.1016/j.ijplas.2018.01.012
|
[13] |
張超, 郭輝, 王家星, 等. 等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響. 工程科學學報, 2018, 40(12):1502
Zhang C, Guo H, Wang J X, et al. Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel. Chin J Eng, 2018, 40(12): 1502
|
[14] |
李爽, 時彥林, 楊曉彩, 等. 鉬鎢釩合金化熱作模具鋼高溫回火組織演變. 工程科學學報, 2020, 42(7):902
Li S, Shi Y L, Yang X C, et al. Microstructural evolution of Mo–W–V alloyed hot-work die steel during high-temperature tempering. Chin J Eng, 2020, 42(7): 902
|
[15] |
Liu H H, Fu P X, Liu H W, et al. Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering. Mater Sci Eng A, 2017, 709: 181
|
[16] |
盧曉紅, 路彥君, 王福瑞, 等. 鎳基高溫合金Inconel718微銑削加工硬化研究. 組合機床與自動化加工技術, 2016(7):4
Lu X H, Lu Y J, Wang F R, et al. Research on work hardening of micro-milling nickel-based superalloy. Modular Mach Tool Autom Manuf Tech, 2016(7): 4
|
[17] |
張坤領. 車削零件表面粗糙度成因分析及降低措施. 煤礦機械, 2013, 34(5):166
Zhang K L. Analysis and reduction measures on surface roughness of turning parts. Coal Mine Mach, 2013, 34(5): 166
|
[18] |
劉禹門. 結構鋼的形變位錯結構和強度. 鋼鐵研究學報, 2007, 19(4):1 doi: 10.3321/j.issn:1001-0963.2007.04.001
Liu Y M. Deformation dislocation structure and strength of structural steels. J Iron Steel Res, 2007, 19(4): 1 doi: 10.3321/j.issn:1001-0963.2007.04.001
|
[19] |
黃宇, 成國光, 鮑道華. H13鋼中一次碳化物的特征及控制進展. 工程科學學報. doi: 10.13374/j.issn2095-9389.2020.05.24.002
Huang Y, Cheng G G, Bao Dao H. Current status of the characteristics and control of primary carbides in H13 steel. Chin J Eng. doi: 10.13374/j.issn2095-9389.2020.05.24.002
|
[20] |
Sabzi H E, Hanzaki A Z, Abedi H R, et al. The effects of bimodal grain size distributions on the work hardening behavior of a transformation-twinning induced plasticity steel. Mater Sci Eng A, 2016, 678: 23 doi: 10.1016/j.msea.2016.09.085
|
[21] |
Abukhshim N A, Mativenga P T, Sheikh M A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int J Mach Tools Manuf, 2006, 46(7-8): 782 doi: 10.1016/j.ijmachtools.2005.07.024
|
[22] |
Zheng G M, Xu R F, Cheng X, et al. Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement, 2018, 125: 99 doi: 10.1016/j.measurement.2018.04.078
|
[23] |
Suresh R, Basavarajappa S, Samuel G L. Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 2012, 45(7): 1872 doi: 10.1016/j.measurement.2012.03.024
|
[24] |
占剛, 何林, 蔣宏婉, 等. 新型硬質合金微坑車刀切削能對比研究與預測. 工程科學學報, 2017, 39(8):1207
Zhan G, He L, Jiang H W, et al. Performance comparison and prediction of cutting energy of new cemented carbide micro-pit turning tool. Chin J Eng, 2017, 39(8): 1207
|
[25] |
Oliaei S N B, Karpat Y. Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. J Mater Process Technol, 2016, 235: 28 doi: 10.1016/j.jmatprotec.2016.04.010
|