<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
WANG Yu-bin, WANG Yong, CHEN Xuan, WU Xiao-chun. Machinability analysis of microstructures in pre-hardening plastic mold steel 718[J]. Chinese Journal of Engineering, 2020, 42(10): 1343-1351. doi: 10.13374/j.issn2095-9389.2019.11.06.001
Citation: WANG Yu-bin, WANG Yong, CHEN Xuan, WU Xiao-chun. Machinability analysis of microstructures in pre-hardening plastic mold steel 718[J]. Chinese Journal of Engineering, 2020, 42(10): 1343-1351. doi: 10.13374/j.issn2095-9389.2019.11.06.001

Machinability analysis of microstructures in pre-hardening plastic mold steel 718

doi: 10.13374/j.issn2095-9389.2019.11.06.001
More Information
  • Owing to strict dimension accuracy demands, pre-hardening treatment has been widely used in the mold for production of large plastic parts. However, the large volume of mold leads to the existence of tempered martensite and bainite structure on the cross section by pre-hardened heat treatment, and the uneven structure makes great influences on the cutting performance of the pre-hardening plastic mold steel. For service materials, machinability is affected by strength, work temperature, cutting conditions, plastic deformation, phase. Pioneering researchers tended to focus on the influences of temperature, cutting conditions and little is known about the effect of different microstructures in same materials. In this work, 718 steels with tempered martensite, lower bainite and grain bainite structures were prepared by heat treatment. The microstructures and mechanical properties were characterized by optical microscopy, scanning electron microscopy, X-ray diffractometer and universal tensile testing machine. Meanwhile, the effects of mechanical properties and structure on processing properties were studied by high-speed milling experiments and optical profilometer. The results show that when the cutting speed was lower than 145 m·min?1, the bainite was easier to cut than tempered martensite, and the life of tool cutting for bainite was 30%?40% higher than life of tool cutting for tempered martensite. When the cutting speed was higher than 165 m·min?1, tempered martensite microstructure worked softening and the life of tool cutting for it increased, moreover, its workability advanced. The ridges were observed on the milling surface of grain bainite because of severe tool adhesion and tempered martensite structure has the best milling surface roughness. Under consideration, the comprehensive machinability of the three kinds of microstructure are ranked from high to low: lower bainite structure, martensite structure and granular bainite structure. The adoption of 300 ℃ austempering process can effectively improve the synthesis cutting performance of 718 plastic die steel.

     

  • loading
  • [1]
    Min Y A, Yang Y P, Zhang Z, et al. Study on machinability of pre-hardened plastic mould steel. Adv Mater Res, 2013, 690-693: 2501 doi: 10.4028/www.scientific.net/AMR.690-693.2501
    [2]
    Hoseiny H, Caballero F G, Hogman B, et al. The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel. J Mater Sci, 2012, 47(8): 3613 doi: 10.1007/s10853-011-6208-y
    [3]
    Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel. Tribol Int, 2017, 115: 108 doi: 10.1016/j.triboint.2017.05.028
    [4]
    Nomani J, Pramanik A, Hilditch T, et al. Chip formation mechanism and machinability of wrought duplex stainless steel alloys. Int J Adv Manuf Technol, 2015, 80: 1127 doi: 10.1007/s00170-015-7113-3
    [5]
    Hoseiny H, HoGman B, Andrén H, et al. The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels. Int J Mater Res, 2013, 104(8): 748 doi: 10.3139/146.110926
    [6]
    章順虎. 1CrMn2MoVTiB非調質塑料模具鋼使用性能的研究[學位論文]. 沈陽: 東北大學, 2010

    Zhang S H. Study on 1CrMn2MoVTiB Non-Quenched and Tempered Plastic Mould Steel[Dissertation]. Shenyang: Northeastern University, 2010
    [7]
    Hoseiny H, H?gman B, Klement U, et al. Machinability evaluation of pre-hardened plastic mould steels. Int J Machin Machinab Mater, 2012, 11(4): 327
    [8]
    Huang W M, Zhao J, Niu J T, et al. Comparison in surface integrity and fatigue performance for hardened steel ball-end milled with different milling speeds. Procedia CIRP, 2018, 71: 267 doi: 10.1016/j.procir.2018.05.059
    [9]
    Xavior M A, Manohar M, Madhukar P M, et al. Experimental investigation of work hardening, residual stress and microstructure during machining Inconel 718. J Mech Sci Technol, 2017, 31(10): 4789 doi: 10.1007/s12206-017-0926-2
    [10]
    Garcia-Mateo C, Peet M, Caballero F G, et al. Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol, 2004, 20(7): 814 doi: 10.1179/026708304225017355
    [11]
    Zhang Z, Wu X C, Zhou Q, et al. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds. Int J Miner Metall Mater, 2015, 22(8): 842 doi: 10.1007/s12613-015-1141-8
    [12]
    Fujita N, Ishikawa N, Roters F, et al. Experimental–numerical study on strain and stress partitioning in bainitic steels with martensite–austenite constituents. Int J Plast, 2018, 104: 39 doi: 10.1016/j.ijplas.2018.01.012
    [13]
    張超, 郭輝, 王家星, 等. 等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響. 工程科學學報, 2018, 40(12):1502

    Zhang C, Guo H, Wang J X, et al. Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel. Chin J Eng, 2018, 40(12): 1502
    [14]
    李爽, 時彥林, 楊曉彩, 等. 鉬鎢釩合金化熱作模具鋼高溫回火組織演變. 工程科學學報, 2020, 42(7):902

    Li S, Shi Y L, Yang X C, et al. Microstructural evolution of Mo–W–V alloyed hot-work die steel during high-temperature tempering. Chin J Eng, 2020, 42(7): 902
    [15]
    Liu H H, Fu P X, Liu H W, et al. Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering. Mater Sci Eng A, 2017, 709: 181
    [16]
    盧曉紅, 路彥君, 王福瑞, 等. 鎳基高溫合金Inconel718微銑削加工硬化研究. 組合機床與自動化加工技術, 2016(7):4

    Lu X H, Lu Y J, Wang F R, et al. Research on work hardening of micro-milling nickel-based superalloy. Modular Mach Tool Autom Manuf Tech, 2016(7): 4
    [17]
    張坤領. 車削零件表面粗糙度成因分析及降低措施. 煤礦機械, 2013, 34(5):166

    Zhang K L. Analysis and reduction measures on surface roughness of turning parts. Coal Mine Mach, 2013, 34(5): 166
    [18]
    劉禹門. 結構鋼的形變位錯結構和強度. 鋼鐵研究學報, 2007, 19(4):1 doi: 10.3321/j.issn:1001-0963.2007.04.001

    Liu Y M. Deformation dislocation structure and strength of structural steels. J Iron Steel Res, 2007, 19(4): 1 doi: 10.3321/j.issn:1001-0963.2007.04.001
    [19]
    黃宇, 成國光, 鮑道華. H13鋼中一次碳化物的特征及控制進展. 工程科學學報. doi: 10.13374/j.issn2095-9389.2020.05.24.002

    Huang Y, Cheng G G, Bao Dao H. Current status of the characteristics and control of primary carbides in H13 steel. Chin J Eng. doi: 10.13374/j.issn2095-9389.2020.05.24.002
    [20]
    Sabzi H E, Hanzaki A Z, Abedi H R, et al. The effects of bimodal grain size distributions on the work hardening behavior of a transformation-twinning induced plasticity steel. Mater Sci Eng A, 2016, 678: 23 doi: 10.1016/j.msea.2016.09.085
    [21]
    Abukhshim N A, Mativenga P T, Sheikh M A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int J Mach Tools Manuf, 2006, 46(7-8): 782 doi: 10.1016/j.ijmachtools.2005.07.024
    [22]
    Zheng G M, Xu R F, Cheng X, et al. Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement, 2018, 125: 99 doi: 10.1016/j.measurement.2018.04.078
    [23]
    Suresh R, Basavarajappa S, Samuel G L. Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 2012, 45(7): 1872 doi: 10.1016/j.measurement.2012.03.024
    [24]
    占剛, 何林, 蔣宏婉, 等. 新型硬質合金微坑車刀切削能對比研究與預測. 工程科學學報, 2017, 39(8):1207

    Zhan G, He L, Jiang H W, et al. Performance comparison and prediction of cutting energy of new cemented carbide micro-pit turning tool. Chin J Eng, 2017, 39(8): 1207
    [25]
    Oliaei S N B, Karpat Y. Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. J Mater Process Technol, 2016, 235: 28 doi: 10.1016/j.jmatprotec.2016.04.010
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (2961) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频