<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
LIU Li-yuan, JI Hong-guang, WANG Tao, PEI Feng, QUAN Dao-lu. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress[J]. Chinese Journal of Engineering, 2020, 42(6): 715-722. doi: 10.13374/j.issn2095-9389.2019.11.05.004
Citation: LIU Li-yuan, JI Hong-guang, WANG Tao, PEI Feng, QUAN Dao-lu. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress[J]. Chinese Journal of Engineering, 2020, 42(6): 715-722. doi: 10.13374/j.issn2095-9389.2019.11.05.004

Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress

doi: 10.13374/j.issn2095-9389.2019.11.05.004
More Information
  • With the development of the mining industry, a large number of accessible shallow mineral resources are being depleted, and some have now been completely exhausted. The exploitation of the Earth’s deep mineral resources has become the only way to meet the society’s growing demand for minerals. With the increase in mining depth, the geostress, temperature, and pore pressure of water increase significantly, and the nonlinear mechanical behavior of rock becomes prominent. To assess the damage and failure of surrounding rock in deep shaft under high osmotic pressure and asymmetric geostress, a coupled mechanical–hydraulic–damage model was proposed to examine the effective stress of surrounding rock in deep shaft. This approach took into account the maximum tensile stress criterion with shear failure based on the Mohr–Coulomb criterion and was applied to simulate damage evolution in heterogeneous rocks. On this basis, the mechanisms of pore pressure, rock permeability, and geostress and its effects on rock damage evolution and fracture propagation were further investigated. The results indicate that the larger the pore pressure and its gradient are, the larger the damage and failure areas of surrounding rock. With the decrease of permeability of country rock, the damage and failure areas of country rock gradually increase and tend to be stable. The geostress field plays an important role in controlling the failure morphology of surrounding rock. When the ratio between maximum and minimum horizontal principal stresses is small, the damage and failure zones of the surrounding rock are concentrated in the direction of the minimum horizontal principal stress, mainly shear damage. However, if the ratio is large enough, then the tensile damage zone may occur in the direction of the maximum horizontal principal stress. Notably, the ratio of the maximum horizontal principal effective stress to the minimum horizontal principal effective stress increases because of the presence of pore pressure. Therefore, a high pore pressure in the formation could increase the risk of tensile failure of surrounding rocks. The findings of this research can be applied to the optimization of the shaft design to avoid areas with high tectonic stress and high pore pressure and ensure the safety of shaft construction.

     

  • loading
  • [1]
    謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161

    Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161
    [2]
    錢七虎. 非線性巖石力學的新進展—深部巖體力學的若干關鍵問題//第八次全國巖石力學與工程學術大會論文集. 成都, 2004: 10

    Qian Q H. The current development of nonlinear rock mechanics: the current development of nonlinear rock mechanics: the mechanics problems of deep rock mass//Proceedings of the 8th Rock Mechanics and Engineering Conference. Chengdu, 2004: 10
    [3]
    何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001

    He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
    [4]
    謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1

    Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1
    [5]
    Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
    [6]
    Feng X T, Liu J P, Chen B R, et al. Monitoring, warning, and control of rockburst in deep metal mines. Engineering, 2017, 3(4): 538 doi: 10.1016/J.ENG.2017.04.013
    [7]
    蔡美峰, 冀東, 郭奇峰. 基于地應力現場實測與開采擾動能量積聚理論的巖爆預測研究. 巖石力學與工程學報, 2013, 32(10):1973

    Cai M F, Ji D, Guo Q F. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance. Chin J Rock Mech Eng, 2013, 32(10): 1973
    [8]
    姜耀東, 趙毅鑫. 我國煤礦沖擊地壓的研究現狀:機制、預警與控制. 巖石力學與工程學報, 2015, 34(11):2188

    Jiang Y D, Zhao Y X. State of the art: investigation on mechanism, forecast and control of coal bumps in China. Chin J Rock Mech Eng, 2015, 34(11): 2188
    [9]
    謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283

    Xie H P. Research review of the state key research development program of China: deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283
    [10]
    朱萬成, 魏晨慧, 田軍, 等. 巖石損傷過程中的熱?流?力耦合模型及其應用初探. 巖土力學, 2009, 30(12):3851 doi: 10.3969/j.issn.1000-7598.2009.12.050

    Zhu W C, Wei C H, Tian J, et al. Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application. Rock Soil Mech, 2009, 30(12): 3851 doi: 10.3969/j.issn.1000-7598.2009.12.050
    [11]
    周宏偉, 謝和平, 左建平. 深部高地應力下巖石力學行為研究進展. 力學進展, 2005, 35(1):91 doi: 10.3321/j.issn:1000-0992.2005.01.009

    Zhou H W, Xie H P, Zuo J P. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths. Adv Mech, 2005, 35(1): 91 doi: 10.3321/j.issn:1000-0992.2005.01.009
    [12]
    李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129

    Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129
    [13]
    唐春安. 巖石破裂過程中的災變. 北京: 煤炭工業出版社, 1993

    Tang C A. Catastrophe in Rock Unstable Failure. Beijing: China Coal Industry Publishing House, 1993
    [14]
    Tang C A, Liu H, Lee P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression - Part I: effect of heterogeneity. Int J Rock Mech Min Sci, 2000, 37(4): 555 doi: 10.1016/S1365-1609(99)00121-5
    [15]
    Tang C A, Tham L G, Lee P K K, et al. Coupled analysis of flow, stress and damage (FSD) in rock failure. Int J Rock Mech Min Sci, 2002, 39(4): 477 doi: 10.1016/S1365-1609(02)00023-0
    [16]
    Liu L Y, Zhu W C, Wei C H, et al. Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing. J Petrol Sci Eng, 2018, 164: 91 doi: 10.1016/j.petrol.2018.01.049
    [17]
    Liu L Y, Ji H G, Elsworth D, et al. Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci, 2020, 126: 104185 doi: 10.1016/j.ijrmms.2019.104185
    [18]
    Yang T H, Tham L G, Tang C A, et al. Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks. Rock Mech Rock Eng, 2004, 37(4): 251 doi: 10.1007/s00603-003-0022-z
    [19]
    Hoek E, Martin C D. Fracture initiation and propagation in intact rock-a review. J Rock Mech Geotech Eng, 2014, 6(4): 287 doi: 10.1016/j.jrmge.2014.06.001
    [20]
    錢七虎. 地下工程建設安全面臨的挑戰與對策. 巖石力學與工程學報, 2012, 31(10):1945 doi: 10.3969/j.issn.1000-6915.2012.10.001

    Qian Q H. Challenges faced by underground projects construction safety and countermeasures. Chin J Rock Mech Eng, 2012, 31(10): 1945 doi: 10.3969/j.issn.1000-6915.2012.10.001
    [21]
    Li H B, Liu M C, Xing W B, et al. Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse. Rock Mech Rock Eng, 2017, 50(7): 1883
    [22]
    Chang S H, Lee C I, Lee Y K. An experimental damage model and its application to the evaluation of the excavation of the excavation damage zone. Rock Mech Rock Eng, 2007, 40(3): 245 doi: 10.1007/s00603-006-0113-8
    [23]
    劉寧, 張春生, 褚衛江. 深埋圍巖破裂損傷深度分析與錨桿長度設計. 巖石力學與工程學報, 2015, 34(11):2278

    Liu N, Zhang C S, Chu W J. Depth of fracture and damage in deep-buried surrounding rock and bolt length design. Chin J Rock Mech Eng, 2015, 34(11): 2278
    [24]
    Li L C, Tang C A, Wang S Y, et al. A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar. Tunnell Undergr Space Technol, 2013, 34: 38
    [25]
    Zhang Y J, Xu T. Hydro-mechanical coupled analysis of the variable permeability coefficient of fractured rock mass. Appl Mech Mater, 2013, 477-478: 531 doi: 10.4028/www.scientific.net/AMM.477-478.531
    [26]
    馬天輝, 張文東, 徐濤. 節理巖體中隧洞圍巖的損傷破壞機理. 東北大學學報: 自然科學版, 2013, 34(10):1485

    Ma T H, Zhang W D, Xu T. Damage and failure mechanism of tunnels in jointed rock mass. J Northeast Univ (Nat Sci), 2013, 34(10): 1485
    [27]
    Liu L Y, Li L C, Elsworth D, et al. The impact of oriented perforation on fracture propagation and complexity in hydraulic fracturing. Processes, 2018, 6(11): 213 doi: 10.3390/pr6110213
    [28]
    朱萬成, 唐春安, 楊天鴻, 等. 巖石破裂過程分析(RFPA2D)系統的細觀單元本構關系及驗證. 巖石力學與工程學報, 2003, 22(1):24 doi: 10.3321/j.issn:1000-6915.2003.01.004

    Zhu W C, Tang C A, Yang T H, et al. Constitutive relationship of mesoscopic elements used in RFPA2D and its validations. Chin J Rock Mech Eng, 2003, 22(1): 24 doi: 10.3321/j.issn:1000-6915.2003.01.004
    [29]
    Zhu W C, Liu L Y, Liu J S, et al. Impact of gas adsorption-induced coal damage on the evolution of coal permeability. Int J Rock Mech Min Sci, 2018, 101: 89 doi: 10.1016/j.ijrmms.2017.11.007
    [30]
    於汝山, 楊宜, 許冬麗. Hoek-Brown強度準則在深部巖體力學參數估算中的應用研究. 長江科學院院報, 2018, 35(1):123 doi: 10.11988/ckyyb.20160924

    Yu R S, Yang Y, Xu D L. Study on the application of Hoek-Brown strength criterion in estimating mechanics parameters of deep rock mass. J Yangtze River Sci Res Inst, 2018, 35(1): 123 doi: 10.11988/ckyyb.20160924
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)

    Article views (2439) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频