<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
RUAN Zhu-en, WU Ai-xiang, WANG Jian-dong, YIN Sheng-hua, WANG Yong. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length[J]. Chinese Journal of Engineering, 2020, 42(8): 980-987. doi: 10.13374/j.issn2095-9389.2019.10.29.004
Citation: RUAN Zhu-en, WU Ai-xiang, WANG Jian-dong, YIN Sheng-hua, WANG Yong. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length[J]. Chinese Journal of Engineering, 2020, 42(8): 980-987. doi: 10.13374/j.issn2095-9389.2019.10.29.004

Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length

doi: 10.13374/j.issn2095-9389.2019.10.29.004
More Information
  • Corresponding author: E-mail: wuaixiang@126.com
  • Received Date: 2019-10-29
  • Publish Date: 2020-09-11
  • Deep-cone thickening of unclassified tailings is one of the key technologies in the field of cemented paste backfill. Flocculation and settling behavior of unclassified tailings constitute key research topics of the deep-cone thickening technology. Based on the measurement of the floc chord length during the unclassified tailings flocculation process, this study investigated the flocculation and settling processes independently, which is different from the traditional research. First, the average chord length of the floc was used as the index to study the flocculation behavior of the unclassified tailings under different conditions. Then, the initial settling rate of the suspension–supernate interface was used as the index to analyze the settling behavior of the unclassified tailings slurry under varying flocculation conditions. Under different flocculation conditions, the unclassified tailings particles were flocculated rapidly and the average chord length of the floc increased rapidly to the peak value. Then, it decreased gradually with the shear time until it reached a stable state. It was found that the average chord length of the flocs of the unclassified tailings and the initial settling rate of the suspension–supernate interface of the flocculated, unclassified tailings slurry vary with flocculation conditions. For the scope of this study, the optimal flocculation conditions were determined as follows: the flocculant used was Magnafloc 5250, the solid mass fraction was 10%, the flocculant dosage was 10 g·t?1, the flocculant mass fraction was 0.025%, and the shear rate was 94.8 s?1. Under such flocculation conditions, the peak value of the average chord length of the floc was 620.63 μm, the average chord length after the flocculation was 399.57 μm, and the initial settling rate of the suspension–supernate interface of the flocculated tailings slurry was 4.61 mm·s?1. The initial settling rate model of the suspension–supernate interface, applicable only to the tailings used in this study, was established preliminarily based on the average chord length of the flocs. The initial settling rate of the suspension–supernate interface increased with the increase in the average chord length of the flocs, providing a reference for the control of flocculation and settling parameters and the optimization of the equipment structure to improve the flocculation settling efficiency of unclassified tailings slurry in actual production.

     

  • loading
  • [1]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. <italic>Chin J Eng</italic>, 2018, 40(5): 517
    [2]
    Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. <italic>Miner Eng</italic>, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025
    [3]
    Tan C K, Setiawan R, Bao J, et al. Studies on parameter estimation and model predictive control of paste thickeners. <italic>J Process Control</italic>, 2015, 28: 1 doi: 10.1016/j.jprocont.2015.02.002
    [4]
    Arjmand R, Massinaei M, Behnamfard A. Improving flocculation and dewatering performance of iron tailings thickeners. <italic>J Water Process Eng</italic>, 2019, 31: 100873 doi: 10.1016/j.jwpe.2019.100873
    [5]
    Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. <italic>J Clean Prod</italic>, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
    [6]
    Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. <italic>Appl Math Model</italic>, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
    [7]
    張欽禮, 王石, 王新民. 絮凝劑單耗對全尾砂漿渾液面沉速的影響規律. 中國有色金屬學報, 2017, 27(2):318

    Zhang Q L, Wang S, Wang X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry. <italic>Chin J Nonferrous Met</italic>, 2017, 27(2): 318
    [8]
    王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11):1419

    Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. <italic>J Univ Sci Technol Beijing</italic>, 2013, 35(11): 1419
    [9]
    焦華喆, 王洪江, 吳愛祥, 等. 全尾砂絮凝沉降規律及其機理. 北京科技大學學報, 2010, 32(6):702

    Jiao H Z, Wang H J, Wu A X, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings. <italic>J Univ Sci Technol Beijing</italic>, 2010, 32(6): 702
    [10]
    吳愛祥, 周靚, 尹升華, 等. 全尾砂絮凝沉降的影響因素. 中國有色金屬學報, 2016, 26(2):439

    Wu A X, Zhou J, Yin S H, et al. Influence factors on flocculation sedimentation of unclassified tailings. <italic>Chin J Nonferrous Met</italic>, 2016, 26(2): 439
    [11]
    Nguyen T P, Hankins N P, Hilal N. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. <italic>J Hazard Mater</italic>, 2007, 139(2): 265 doi: 10.1016/j.jhazmat.2006.06.025
    [12]
    Botha L, Soares J B P. The influence of tailings composition on flocculation. <italic>Can J Chem Eng</italic>, 2015, 93(9): 1514 doi: 10.1002/cjce.22241
    [13]
    Li S L, Gao L H, Cao Y J, et al. Effect of pH on the flocculation behaviors of kaolin using a pH-sensitive copolymer. <italic>Water Sci Technol</italic>, 2016, 74(3): 729 doi: 10.2166/wst.2016.266
    [14]
    Konduri M K R, Fatehi P. Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. <italic>Colloid Surf A</italic>, 2017, 530: 20 doi: 10.1016/j.colsurfa.2017.07.045
    [15]
    Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. <italic>Miner Eng</italic>, 2015, 70: 20 doi: 10.1016/j.mineng.2014.08.019
    [16]
    吳愛祥, 阮竹恩, 王建棟, 等. 基于超級絮凝的超細尾砂絮凝行為優化. 工程科學學報, 2019, 41(8):981

    Wu A X, Ruan Z E, Wang J D, et al. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation. <italic>Chin J Eng</italic>, 2019, 41(8): 981
    [17]
    Nguyen T V, Farrow J B, Smith J, et al. Design and development of a novel thickener feedwell using computational fluid dynamics. <italic>J S Afr Inst Min Metall</italic>, 2012, 112(11): 939
    [18]
    Gheshlaghi M E, Goharrizi A S, Shahrivar A A, et al. Modeling industrial thickener using computational fluid dynamics (CFD), a case study: Tailing thickener in the Sarcheshmeh copper mine. <italic>Int J Min Sci Technol</italic>, 2013, 23(6): 885 doi: 10.1016/j.ijmst.2013.11.002
    [19]
    Ruan Z E, Li C P, Shi C. Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener. <italic>J Cent South Univ</italic>, 2016, 23(3): 740 doi: 10.1007/s11771-016-3119-8
    [20]
    Liang L, Peng Y L, Tan J K, et al. A review of the modern characterization techniques for flocs in mineral processing. <italic>Miner Eng</italic>, 2015, 84: 130 doi: 10.1016/j.mineng.2015.10.011
    [21]
    Blanco A, Fuente E, Negro C, et al. Flocculation monitoring: focused beam reflectance measurement as a measurement tool. <italic>Can J Chem Eng</italic>, 2002, 80(4): 1
    [22]
    Senaputra A, Jones F, Fawell P D, et al. Focused beam reflectance measurement for monitoring the extent and efficiency of flocculation in mineral systems. <italic>AIChE J</italic>, 2014, 60(1): 251 doi: 10.1002/aic.14256
    [23]
    Heath A R, Fawell P D, Bahri P A, et al. Estimating average particle size by focused beam reflectance measurement (FBRM). <italic>Part Part Syst Charact</italic>, 2002, 19(2): 84 doi: 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
    [24]
    Spicer P T, Keller W, Pratsinis S E. The effect of impeller type on floc size and structure during shear-induced flocculation. <italic>J Colloid Interface Sci</italic>, 1996, 184(1): 112 doi: 10.1006/jcis.1996.0601
    [25]
    Mietta F, Chassagne C, Winterwerp J C. Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration. <italic>J Colloid Interface Sci</italic>, 2009, 336(1): 134 doi: 10.1016/j.jcis.2009.03.044
    [26]
    Hasan A, Fatehi P. Cationic kraft lignin-acrylamide as a flocculant for clay suspensions: 1) molecular weight effect. <italic>Sep Purif Technol</italic>, 2018, 207: 213 doi: 10.1016/j.seppur.2018.06.047
    [27]
    Dwari R K, Angadi S I, Tripathy S K. Studies on flocculation characteristics of chromite’s ore process tailing: Effect of flocculants ionicity and molecular mass. <italic>Colloid Surf A</italic>, 2018, 537: 467 doi: 10.1016/j.colsurfa.2017.10.069
    [28]
    Kinoshita T, Nakaishi K, Kuroda Y. Determination of kaolinite floc size and structure using interface settling velocity. <italic>Appl Clay Sci</italic>, 2017, 148: 11 doi: 10.1016/j.clay.2017.07.024
    [29]
    Zhang Y Q, Gao W J, Fatehi P. Structure and settling performance of aluminum oxide and poly (acrylic acid) flocs in suspension systems. <italic>Sep Purif Technol</italic>, 2019, 215: 115 doi: 10.1016/j.seppur.2019.01.012
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)

    Article views (1720) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频