<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
WU Ai-xiang, LI Hong, CHENG Hai-yong, WANG Yi-ming, LI Cui-ping, RUAN Zhu-en. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): rheological measurement and prospects[J]. Chinese Journal of Engineering, 2021, 43(4): 451-459. doi: 10.13374/j.issn2095-9389.2019.10.29.002
Citation: WU Ai-xiang, LI Hong, CHENG Hai-yong, WANG Yi-ming, LI Cui-ping, RUAN Zhu-en. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): rheological measurement and prospects[J]. Chinese Journal of Engineering, 2021, 43(4): 451-459. doi: 10.13374/j.issn2095-9389.2019.10.29.002

Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): rheological measurement and prospects

doi: 10.13374/j.issn2095-9389.2019.10.29.002
More Information
  • Corresponding author: E-maill: haiker2007@163.com
  • Received Date: 2019-10-29
  • Publish Date: 2021-04-26
  • Cemented paste backfill (CPB) technology is a significant approach for the development of green mining in metal mines and can provide safe, environmentally friendly, and efficient technical support for deep underground mining. As the theoretical basis of paste backfill, the rheological concepts, characteristics, and models of paste had been systematically reviewed, and the rheological measurement methods were analyzed herein. Rheological measurement enables the quantitative characterization of the rheological behavior of paste, and on this basis, a series of studies, such as the rheological constitutive equations of paste, evaluation of the influence of both internal and external factors on paste rheology, and quality control of CPB, was conducted. Generally, the rheology of paste is influenced by certain constituents, including solids concentration, particle size distribution, density, and cement hydration, and various external conditions, such as shear stress and temperature. The rheological properties of paste differ significantly, and currently, a unified method is not yet available for the rheological measurement of paste. Hence, comprehensive knowledge of rheological measurement is essential to achieve a better combination of rheology and CPB engineering, particularly in consideration of the specific physical and chemical properties of tailings and the common practice in the mining field. Therefore, the principles and applications of commonly used approaches, including the vane rheometer, slump cone, L-shaped tube, inclined pipe, and loop facility, were summarized, with emphasis on the measurement of yield stress because of its influence on the paste, that is, a non-Newtonian fluid. Furthermore, the applicability of the aforementioned measurement methods was comprehensively discussed. Given that rheological measurement has a profound effect on the development of paste rheology theory and paste backfill technology, the key problems were discussed by emphasizing the importance of the establishment of rheological measurement standards and the application of rheological measurement to paste backfill processes in real time. The development trend of research on paste rheology was also explored.

     

  • loading
  • [1]
    吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016, 45(7):1 doi: 10.3969/j.issn.1001-1250.2016.07.001

    Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016, 45(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001
    [2]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [3]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [4]
    Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [5]
    Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
    [6]
    陳健中. 用旋轉葉片式流變儀測定新拌混凝土的流變性能. 上海建材學院學報, 1992, 5(3):164

    Chen J Z. Measurement of the rheological properties of fresh concrete using the rotating fan type rheometer. J Shanghai Inst Build Mater, 1992, 5(3): 164
    [7]
    Dzuy N Q, Boger D V. Direct yield stress measurement with the vane method. J Rheol, 1985, 29(3): 335 doi: 10.1122/1.549794
    [8]
    Assaad J J, Harb J, Maalouf Y. Effect of vane configuration on yield stress measurements of cement pastes. J Non-Newtonian Fluid Mech, 2016, 230: 31 doi: 10.1016/j.jnnfm.2016.01.002
    [9]
    Nguyen Q D, Boger D V. Characterization of yield stress fluids with concentric cylinder viscometers. Rheol Acta, 1987, 26(6): 508 doi: 10.1007/BF01333734
    [10]
    Barnes H A. A brief history of the yield stress. Appl Rheol, 1999, 9(6): 262 doi: 10.1515/arh-2009-0018
    [11]
    Barnes H A. The yield stress—a review or ‘παντα ρει’—everything flows? J Non-Newtonian Fluid Mech, 1999, 81(1-2): 133 doi: 10.1016/S0377-0257(98)00094-9
    [12]
    Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y
    [13]
    Liddel P V, Boger D V. Yield stress measurements with the vane. J Non-Newtonian Fluid Mech, 1996, 63(2-3): 235 doi: 10.1016/0377-0257(95)01421-7
    [14]
    Barnes H A, Carnali J O. The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. J Rheol, 1990, 34(6): 841 doi: 10.1122/1.550103
    [15]
    吳愛祥, 焦華喆, 王洪江, 等. 膏體尾礦屈服應力檢測及其優化. 中南大學學報:自然科學版, 2013, 44(8):3370

    Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of Paste tailings. J Central S Univ Sci Technol, 2013, 44(8): 3370
    [16]
    Nguyen Q D, Boger D V. Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech, 1992, 24(1): 47 doi: 10.1146/annurev.fl.24.010192.000403
    [17]
    Petrellis N C, Flumerfelt R W. Rheological behavior of shear degradable oils: kinetic and equilibrium properties. Can J Chem Eng, 1973, 51(3): 291 doi: 10.1002/cjce.5450510305
    [18]
    Van den Tempel M. Mechanical properties of plastic-disperse systems at very small deformations. J Colloid Sci, 1961, 16(3): 284 doi: 10.1016/0095-8522(61)90005-8
    [19]
    Zosel A. Rheological properties of disperse systems at low shear stresses. Rheol Acta, 1982, 21(1): 72 doi: 10.1007/BF01520707
    [20]
    Cheng D C H. Yield stress: a time-dependent property and how to measure it. Rheol Acta, 1986, 25(5): 542 doi: 10.1007/BF01774406
    [21]
    Dzuy N Q, Boger D V. Yield stress measurement for concentrated suspensions. J Rheol, 1983, 27(4): 321 doi: 10.1122/1.549709
    [22]
    De Kee D, Mohan P, Soong D S. Yield stress determination of styrene-butadiene-styrene triblock copolymer solutions. J Macromol Sci Part B Phys, 1986, 25(1-2): 153 doi: 10.1080/00222348608248035
    [23]
    Heywood N I, Cheng D C H. Comparison of methods for predicting head loss in turbulent pipe flow of non-Newtonian fluids. Trans Inst Meas Control, 1984, 6(1): 33 doi: 10.1177/014233128400600105
    [24]
    Wildemuth C R, Williams M C. A new interpretation of viscosity and yield stress in dense slurries: coal and other irregular particles. Rheol Acta, 1985, 24(1): 75 doi: 10.1007/BF01329266
    [25]
    Saak A W, Jennings H M, Shah S P. A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res, 2004, 34(3): 363 doi: 10.1016/j.cemconres.2003.08.005
    [26]
    Clayton S, Grice T G, Boger D V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process, 2003, 70(1-4): 3 doi: 10.1016/S0301-7516(02)00148-5
    [27]
    Roussel N. Three-dimensional numerical simulations of slump tests. Annu Trans Nordic Rheol Soc, 2004, 12: 55
    [28]
    Roussel N, Coussot P. “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J Rheol, 2005, 49(3): 705 doi: 10.1122/1.1879041
    [29]
    Roussel N. Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct, 2006, 39(4): 501
    [30]
    Wallevik J E. Relationship between the Bingham parameters and slump. Cem Concr Res, 2006, 36(7): 1214 doi: 10.1016/j.cemconres.2006.03.001
    [31]
    Murata J. Flow and deformation of fresh concrete. Mater Constr, 1984, 17(2): 117 doi: 10.1007/BF02473663
    [32]
    Christensen G. Modelling the Flow of Fresh Concrete: the Slump Test[Dissertation]. Princeton: Princeton University, 1991
    [33]
    Rajani B, Morgenstern N. On the yield stress of geotechnical materials from the slump test. Can Geotech J, 1991, 28(3): 457 doi: 10.1139/t91-056
    [34]
    Schowalter W R, Christensen G. Toward a rationalization of the slump test for fresh concrete: comparisons of calculations and experiments. J Rheol, 1998, 42(4): 865 doi: 10.1122/1.550905
    [35]
    Ferraris C F, de Larrard F. Modified slump test to measure rheological parameters of fresh concrete. Cem Concr Aggregates, 1998, 20(2): 241 doi: 10.1520/CCA10417J
    [36]
    Chandler J L. The stacking and solar drying process for disposal of bauxite tailings in Jamaica//Proceedings of the International Conference on Bauxite Tailings. Kingston, 1986: 101
    [37]
    Pashias N, Boger D V, Summers J, et al. A fifty cent rheometer for yield stress measurement. J Rheol, 1996, 40(6): 1179 doi: 10.1122/1.550780
    [38]
    Jewell RJ, Fourie A B. Paste and Thickened Tailings – A Guide. 3rd Ed. Perth: Australian Centre for Geomechanics, 2015
    [39]
    Gawu S K Y, Fourie A B. Assessment of the modified slump test as a measure of the yield stress of high-density thickened tailings. Can Geotech J, 2004, 41(1): 39 doi: 10.1139/t03-071
    [40]
    蘭文濤, 吳愛祥, 王貽明. 基于工業級L管的膏體自流充填倍線研究. 化工礦物與加工, 2019, 48(3):9

    Lan W T, Wu A X, Wang Y M. Study on gravity-flow filling times line of paste based on industrial-grade L-pipe. Ind Miner Process, 2019, 48(3): 9
    [41]
    卞繼偉, 張欽禮, 王浩. 基于L管試驗的似膏體管流水力坡度模型. 中國礦業大學學報, 2019, 48(1):23

    Bian J W, Zhang Q L, Wang H. Pipeline hydraulic gradient model of paste-like based on L-pipe experiments. J China Univ Min Technol, 2019, 48(1): 23
    [42]
    許毓海, 許新啟. 高濃度(膏體)充填流變特性及自流輸送參數的合理確定. 礦冶, 2004, 13(3):16 doi: 10.3969/j.issn.1005-7854.2004.03.005

    Xu Y H, Xu X Q. Rheological behavior of high-density backfill and reasonable determination of the parameters for its gravity-flow transport. Min Metall, 2004, 13(3): 16 doi: 10.3969/j.issn.1005-7854.2004.03.005
    [43]
    李公成, 王洪江, 吳愛祥, 等. 基于傾斜管實驗的膏體自流輸送規律. 中國有色金屬學報, 2014, 24(12):3162

    Li G C, Wang H J, Wu A X, et al. Gravity transport law of paste based on inclined pipe experiment. Chin J Nonferrous Met, 2014, 24(12): 3162
    [44]
    鄧代強, 王莉, 周喻, 等. 充填料漿L型管道自流輸送模擬試驗分析. 廣西大學學報:自然科學版, 2012, 37(4):837

    Deng D Q, Wang L, Zhou Y, et al. Experimental analysis on the transportation simulation of filling slurry in L-shape pipeline. J Guangxi Univ Nat Sci Ed, 2012, 37(4): 837
    [45]
    陳琴瑞, 王洪江, 吳愛祥, 等. 用L管測定膏體料漿水力坡度試驗研究. 武漢理工大學學報, 2011, 33(1):108 doi: 10.3963/j.issn.1671-4431.2011.01.024

    Chen Q R, Wang H J, Wu A X, et al. Experimental study on hydraulic gradient of paste slurry by L-pipe. J Wuhan Univ Technol, 2011, 33(1): 108 doi: 10.3963/j.issn.1671-4431.2011.01.024
    [46]
    李國政, 于潤滄. 充填料漿環管試驗計算機仿真應用的研究. 黃金, 2008, 29(4):21 doi: 10.3969/j.issn.1001-1277.2008.04.006

    Li G Z, Yu R C. Study of implementing computer simulation of filling slurry round-pipe test. Gold, 2008, 29(4): 21 doi: 10.3969/j.issn.1001-1277.2008.04.006
    [47]
    Assaad J J, Harb J, Maalouf Y. Measurement of yield stress of cement pastes using the direct shear test. J Non-Newtonian Fluid Mech, 2014, 214: 18 doi: 10.1016/j.jnnfm.2014.10.009
    [48]
    American Society for Testing and Materials. ASTM C 143/C 143M Standard Test Method for Slump of Hydraulic-Cement Concrete. Philadelphia: American Society for Testing and Materials, 2002
    [49]
    Chryss A G, M?nch A, Constanti-Carey K. Online rheology monitoring of a thickener underflow//Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Perth, 2019: 495
    [50]
    Chryss A, Fourie A B, Monch A, et al. Towards an integrated approach to tailings management//Proceedings of the 15th International Seminar on Paste and Thickened Tailings. Perth, 2012: 3
    [51]
    Wu S C, Han L Q, Cheng Z Q, et al. Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: the improved Spencer method. Environ Earth Sci, 2019, 78(20): 611 doi: 10.1007/s12665-019-8621-5
    [52]
    Cheng H Y, Wu S C, Zhang X Q, et al. A novel prediction model of strength of paste backfill prepared from waste-unclassified tailings. Adv Mater Sci Eng, 2019, 2019: 3574190
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (2056) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频