<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
ZHANG Jiang-shan, LIU Qing, YANG Shu-feng, LI Jing-she. Research progress on the role of ladle shroud in protecting molten steel during teeming in continuous-casting tundishes[J]. Chinese Journal of Engineering, 2020, 42(8): 939-948. doi: 10.13374/j.issn2095-9389.2019.10.15.001
Citation: ZHANG Jiang-shan, LIU Qing, YANG Shu-feng, LI Jing-she. Research progress on the role of ladle shroud in protecting molten steel during teeming in continuous-casting tundishes[J]. Chinese Journal of Engineering, 2020, 42(8): 939-948. doi: 10.13374/j.issn2095-9389.2019.10.15.001

Research progress on the role of ladle shroud in protecting molten steel during teeming in continuous-casting tundishes

doi: 10.13374/j.issn2095-9389.2019.10.15.001
More Information
  • The global steel yield heavily relies on the continuous-casting process in the modern steel industry. Thus, the implementation of protected teeming in continuous-casting tundish for high-quality clean steel production is essential. Ladle shroud is a refractory device that contains the teeming stream between ladle and tundish. The invention and application of the ladle shroud play a significant role in the development of continuous-casting technology and considerably influence the performance of protected teeming, including protecting molten steel from reoxidation and contamination from air/slag/refractory/ladle filler sand during both steady-state and transient casting periods (i.e., first-heat filling, ladle change, and tundish emptying). In this review, the sources and forms of atmospheric contamination of molten steel in the tundish were addressed and the possible solutions to the problems encountered during the use of the ladle shroud were proposed by considering the invention, industrial trials, and progressive optimization in the early stage of the development of continuous casting. The ladle shroud has been proven to effectively protect the teeming stream, which, however, is closely associated with the structural design and operating practice. Thus, the effect of the structural design of the ladle shroud, including two types of industrialized ladle shroud and several new designs, on protected teeming was analyzed and the advantage of the trumpet-shaped ladle shroud over the conventional ladle shroud in terms of production efficiency and molten steel cleanness was emphasized. The materials of the ladle shroud have also been progressively enhanced to prolong its service life and achieve a stable service performance. The influence of operational parameters, including the immersion depth of the ladle shroud in tundish and misalignment, was also discussed. On the basis of current research and development work in the steelmaking continuous-casting field, the future development direction of the ladle shroud was identified to be structure–function integration, characterized by long service life, lightweight, multifunction, and eco-friendly manufacturing.

     

  • loading
  • [1]
    劉瀏. 高品質特殊鋼關鍵生產技術. 鋼鐵, 2018, 53(4):1

    Liu L. Key production-technology for high-quality special steel. <italic>Iron Steel</italic>, 2018, 53(4): 1
    [2]
    Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish. <italic>ISIJ Int</italic>, 2016, 56(4): 584 doi: 10.2355/isijinternational.ISIJINT-2015-694
    [3]
    Wang Y F, Zhang L F. Transient fluid flow phenomena during continuous casting: part II—cast speed change, temperature fluctuation, and steel grade mixing. <italic>ISIJ Int</italic>, 2010, 50(12): 1783 doi: 10.2355/isijinternational.50.1783
    [4]
    Sahai Y, Emi T. Tundish Technology for Clean Steel Production. Singapore: World Scientific, 2007
    [5]
    蔡開科. 連鑄坯質量控制. 北京: 冶金工業出版社, 2010

    Cai K K. Quality Control of Continuous Casting Blank. Beijing: Metallurgical Industry Press, 2010
    [6]
    Little J, Van Oosten M, McLean A. Factors affecting the reoxydation of molten steel during continuous casting. <italic>Can Metall Q</italic>, 1968, 7(4): 235 doi: 10.1179/cmq.1968.7.4.235
    [7]
    Sommerville I, McKeogh E. Reoxidation of steel by air entrained during casting // Continuous Casting of Steel, Second Process Technology Conference. Warrendale, 1981: 256
    [8]
    李凱. 新型連鑄水口密封元件的制備及應用[學位論文]. 沈陽: 東北大學, 2008

    Li K. Preparation and Application of New-Style Sealing Member for Continuous Casting Nozzle [Dissertation]. Shenyang: Northeastern University, 2008
    [9]
    Demasi G A, Hartmann R F. Development of the ladle shroud mechanism and its metallurgical benefits // Steelmaking Conference Proceedings. Warrendale, 1981: 245
    [10]
    Whitmore B C. Oxide segregation in aluminum-killed strand cast steel slabs. <italic>Iron Steelmaker</italic>, 1978, 5(10): 34
    [11]
    曹爾仙. 連鑄用浸入式長水口的發展. 鋼鐵, 1982, 17(9):14

    Cao E X. Development of submerged nozzles in continuous casting. <italic>Iron Steel</italic>, 1982, 17(9): 14
    [12]
    Zhang J S, Liu Q, Yang S F, et al. Advances in ladle shroud as a functional device in tundish metallurgy: a review. <italic>ISIJ Int</italic>, 2019, 59(7): 1167 doi: 10.2355/isijinternational.ISIJINT-2019-044
    [13]
    Deng X X, Ji C X, Zhu G S, et al. Quantitative evaluations of surface cleanliness in IF steel slabs at unsteady casting. <italic>Metall Mater Trans B</italic>, 2019, 50(4): 1974 doi: 10.1007/s11663-019-01589-x
    [14]
    鄧志銀, 朱苗勇. 引流砂: 鋼中大型夾雜物的重要來源// 第十一屆中國鋼鐵年會. 北京, 2017: 274

    Deng Z Y, Zhu M Y. Ladle filler sand: An important source of macro-inclusions in steel// Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 274
    [15]
    張闖, 周俐, 朱李艷, 等. 換包過程引流砂行為的試驗分析. 煉鋼, 2018, 34(4):35

    Zhang C, Zhou L, Zhu L Y, et al. Experimental analysis of drainage sand behavior during conversion process during the change of ladle. <italic>Steelmaking</italic>, 2018, 34(4): 35
    [16]
    任三兵, 秦波, 張豐. 通道式中間包內引流砂運動過程研究. 連鑄, 2019, 44(1):10

    Ren S B, Qin B, Zhang F. Study on packing sand movement in tunnel type tundish. <italic>Continuous Cast</italic>, 2019, 44(1): 10
    [17]
    李紅霞. 耐火材料發展概述. 無機材料學報, 2018, 33(2):198 doi: 10.15541/jim20170582

    Li H X. Development overview of refractory materials. <italic>J Inorg Mater</italic>, 2018, 33(2): 198 doi: 10.15541/jim20170582
    [18]
    張美杰, 黃奧, 顧華志, 等. 連鑄中間包耐火材料的沖蝕特性與控流裝置的優化設置. 武漢科技大學學報, 2010, 33(5):449

    Zhang M J, Huang A, Gu H Z, et al. Flow control devices establishment and erosion corrosion of refractory in the continuous casting tundish. <italic>J Wuhan Univ Sci Technol</italic>, 2010, 33(5): 449
    [19]
    Chatterjee S, Li D H, Chattopadhyay K. Tundish open eye formation: a trivial event with dire consequences. <italic>Steel Res Int</italic>, 2017, 88(9): 1600436 doi: 10.1002/srin.201600436
    [20]
    唐海燕, 梁永昌. 鋼包澆注末期匯流旋渦形成機理及影響因素. 金屬學報, 2016, 52(5):519 doi: 10.11900/0412.1961.2015.00391

    Tang H Y, Liang Y C. Formation mechanism and influence factors of sink vortex during ladle teeming. <italic>Acta Metall Sin</italic>, 2016, 52(5): 519 doi: 10.11900/0412.1961.2015.00391
    [21]
    Leung J, Li D H, Chattopadhyay K. Nailed it! Measurement of steel surface velocity in the tundish with open eyes // AISTech 2019——Proceedings of the Iron & Steel Technology Conference. Pittsburgh, 2019: 1467
    [22]
    Zhang C J, Bao Y P, Wang M, et al. Teeming stream protection using an argon shroud during casting of steel ingots. <italic>Int J Miner Metall Mater</italic>, 2017, 24(1): 47 doi: 10.1007/s12613-017-1377-6
    [23]
    Kasai N, Yamazoe H, Iguchi M. Development of optimum argon shrouding system between ladle and tundish. <italic>Tetsu-to-Hagane</italic>, 2005, 91(10): 763 doi: 10.2355/tetsutohagane1955.91.10_763
    [24]
    周川生, 平增幅. 連鑄“三大件”生產與使用: 整體塞棒、長水口、浸入式水口. 北京: 冶金工業出版社, 2014

    Zhou C S, Ping Z F. Production and Use of Refractory for Continuous Casting Monolithic Stopper, Long Nozzle and Submersed Nozzle. Beijing: Metallurgical Industry Press, 2014
    [25]
    Morikawa K, Yoshtomi J, Asano K. The performance of newly developed refractories for continuous // <italic>Tehran International Conference on Refractories</italic>. <italic>Tehran</italic>, 2004: 4
    [26]
    Rasmussen P. Improvements to steel cleanliness at Dofasco’s No.2 melt shop // Steelmaking Conference, Chicago, 1994: 219
    [27]
    Becker B, Prabhu N. Trumpet ladle shroud usage at No.2 BOF/CC of inland steel // Steelmaking Conference Proceedings. Washington, 1991: 489
    [28]
    Zhang J S, Li J S, Yan Y, et al. A comparative study of fluid flow and mass transfer in a trumpet-shaped ladle shroud using large eddy simulation. <italic>Metall Mater Trans B</italic>, 2016, 47(1): 495 doi: 10.1007/s11663-015-0495-7
    [29]
    Zhang J S, Yang S F, Chen Y F, et al. Comparison of multiphase flow in a continuous casting tundish using two types of industrialized ladle shrouds. <italic>JOM</italic>, 2018, 70(12): 2886 doi: 10.1007/s11837-018-2993-y
    [30]
    文光華, 黃永鋒, 唐萍, 等. 鋼包長水口形狀對中間包內鋼液流動特性的影響. 重慶大學學報, 2011, 34(3):69

    Wen G H, Huang Y F, Tang P, et al. Influence of ladle shroud’s shapes on characteristics of fluid flow in tundish. <italic>J Chongqing Univ</italic>, 2011, 34(3): 69
    [31]
    Zhang H, Fang Q, Deng S Y, et al. Multiphase flow in a five-strand tundish using trumpet ladle shroud during steady-state casting and ladle change-over. <italic>Steel Res Int</italic>, 2019, 90(3): 1800497 doi: 10.1002/srin.201800497
    [32]
    Zhang J S, Yang S F, Li M Y, et al. Mathematical modelling of fluid flow inside trumpet-shaped ladle shrouds. <italic>Ironmaking Steelmaking</italic>, 2017, 44(10): 732 doi: 10.1080/03019233.2017.1292692
    [33]
    Solorio-Díaz G, Morales R D, Ramos-Banderas A. Effect of a swirling ladle shroud on fluid flow and mass transfer in a water model of a tundish. <italic>Int J Heat Mass Transfer</italic>, 2005, 48(17): 3574 doi: 10.1016/j.ijheatmasstransfer.2005.03.007
    [34]
    Wang F, Li B K, Tsukihashi F. Large eddy simulation on flow structure in centrifugal flow tundish. <italic>ISIJ Int</italic>, 2007, 47(4): 568 doi: 10.2355/isijinternational.47.568
    [35]
    Morales-Higa K, Guthrie R I L, Isac M, et al. Ladle shroud as a flow control device for tundish operations. <italic>Metall Mater Trans B</italic>, 2013, 44(1): 63 doi: 10.1007/s11663-012-9753-0
    [36]
    Garcia-Hernandez S, Morales R D, de Jesus Barreto J, et al. Modeling study of slag emulsification during ladle change-over using a dissipative ladle shroud. <italic>Steel Res Int</italic>, 2016, 87(9): 1154 doi: 10.1002/srin.201500299
    [37]
    Zhang H, Fang Q, Luo R H, et al. Effect of ladle changeover condition on transient three-phase flow in a five-strand bloom casting tundish. <italic>Metall Mater Trans B</italic>, 2019, 50(3): 1461 doi: 10.1007/s11663-019-01572-6
    [38]
    阮飛, 趙鳳光, 揭暢, 等. 異型坯連鑄長水口浸入深度對中間包流動特性的影響. 連鑄, 2015, 40(3):9

    Ruan F, Zhao F G, Jie C, et al. Influence of immersion depth of long nozzle on liquid steel flow characteristics in beam blank continuous casting tundish. <italic>Continuous Cast</italic>, 2015, 40(3): 9
    [39]
    Das A, Chatterjee S, Mukherjee A. Efficient determination of misalignment of ladle shroud using machine vision // <italic>AISTech</italic> 2019—<italic>Proceedings of the Iron</italic> & <italic>Steel Technology Conference</italic>. <italic>Pittsburgh</italic>, 2019: 1479
    [40]
    Chattopadhyay K, Liu F G, Isac M, et al. Effect of vertical alignment of ladle shroud on transient steel quality output from multistrand tundish. <italic>Ironmaking Steelmaking</italic>, 2011, 38(2): 112 doi: 10.1179/030192310X12731438631723
    [41]
    Yu H, Choi I S, Kim M J, et al. Development of a hydraulic shroud nozzle manipulator with robust force control in continuous casting process. <italic>ISIJ Int</italic>, 2015, 55(5): 1025 doi: 10.2355/isijinternational.55.1025
    [42]
    Shapland E P, King P D. Full Throttle Valve and Method of Tube and Gate Change: US Patents, US4415103A. 1985-10-08
    [43]
    田陸. 一種長水口自動拆裝裝置: 中國專利, 201810127606.X. 2018-07-27

    Tian L. A Device to Automatically Assemble and Disassemble Ladle Shroud: China Patent, 201810127606.X. 2018-07-27
    [44]
    田陸, 包燕平, 李娟, 等. 一種高靈敏性鋼包下渣檢測裝置的研究與應用. 北京科技大學學報, 2009, 31(增刊1): 58

    Tian L, Bao Y P, Li J, et al. Research and application of a high-sensitive slag detection system. J Univ Sci Technol Beijing, 2009, 31(Suppl 1): 58
    [45]
    連文敬. 連鑄鋼包下渣檢測技術的發展. 中國冶金, 2011, 21(8):8

    Lian W J. Development of the ladle slag carry-over detection technology in continuous casting. <italic>China Metall</italic>, 2011, 21(8): 8
    [46]
    Chattopadhyay K, Hasan M, Isac M, et al. Physical and mathematical modeling of inert gas-shrouded ladle nozzles and their role on slag behavior and fluid flow patterns in a delta-shaped four-strand tundish. <italic>Metall Mater Trans B</italic>, 2010, 41(1): 225 doi: 10.1007/s11663-009-9296-1
    [47]
    Bao Y P, Liu J H, Xu B M. Behaviors of fine bubbles in the shroud nozzle of ladle and tundish. <italic>J Univ Sci Technol Beijing</italic>, 2003, 10(4): 23
    [48]
    Wang L H, Lee H G, Hayes P C. A new approach to molten steel refining using fine gas bubbles. <italic>ISIJ Int</italic>, 1996, 36(1): 17 doi: 10.2355/isijinternational.36.17
    [49]
    Chang S, Cao X K, Zou Z S, et al. Micro-bubble formation under non-wetting conditions in a full-scale water model of a ladle shroud/tundish system. <italic>ISIJ Int</italic>, 2018, 58(1): 60 doi: 10.2355/isijinternational.ISIJINT-2017-390
    [50]
    Evans G M, Rigby G D, Honeyands T A, et al. Gas dispersion through porous nozzles into down-flowing liquids. <italic>Chem Eng Sci</italic>, 1999, 54(21): 4861 doi: 10.1016/S0009-2509(99)00206-7
    [51]
    高翱, 王強, 李德軍, 等. 電磁引流技術的出鋼效率及其影響因素. 金屬學報, 2010, 46(5):634 doi: 10.3724/SP.J.1037.2009.00848

    Gao A, Wang Q, Li D J, et al. Efficiency and influencing factors of electromagnetic steel-teeming technology. <italic>Acta Metall Sin</italic>, 2010, 46(5): 634 doi: 10.3724/SP.J.1037.2009.00848
    [52]
    鄭淑國, 鄒琦, 朱苗勇. 一種連鑄過程控制引流砂進入中間包的方法: 中國專利, 201810564363.6. 2018-10-09

    Zheng S G, Zou Q, Zhu M Y. A Method to Avoid the Entry of Filler Sand into Tundish: China Patent, 201810564363.6. 2018-10-09
    [53]
    殷瑞鈺. 新世紀以來中國煉鋼?連鑄的進步及命題. 中國冶金, 2014, 24(8):1

    Yin R Y. The progress and propositions of Chinese steelmaking and continuous casting since the new century. <italic>China Metall</italic>, 2014, 24(8): 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (2318) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频