Citation: | ZHANG Yong-feng, LU Zhi-qiang. Remaining useful life prediction based on an integrated neural network[J]. Chinese Journal of Engineering, 2020, 42(10): 1372-1380. doi: 10.13374/j.issn2095-9389.2019.10.10.005 |
[1] |
Uckun S, Goebel K, Lucas P J F. Standardizing research methods for prognostics // 2008 International Conference on Prognostics and Health Management. Denver, 2008: 1
|
[2] |
Tang D Y, Makis V, Jafari L, et al. Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring. Reliab Eng Syst Saf, 2015, 134: 198 doi: 10.1016/j.ress.2014.10.015
|
[3] |
Canizo M, Onieva E, Conde A, et al. Real-time predictive maintenance for wind turbines using Big Data frameworks // 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, 2017: 70
|
[4] |
Lei Y G, Li N P, Gontarz S, et al. A model-based method for remaining useful life prediction of machinery. IEEE Trans Reliab, 2016, 65(3): 1314 doi: 10.1109/TR.2016.2570568
|
[5] |
Si X S, Wang W B, Hu C H, et al. Remaining useful life estimation – A review on the statistical data driven approaches. Eur J Oper Res, 2011, 213(1): 1 doi: 10.1016/j.ejor.2010.11.018
|
[6] |
Liu Y C, Hu X F, Zhang W J. Remaining useful life prediction based on health index similarity. Reliab Eng Syst Saf, 2019, 185: 502 doi: 10.1016/j.ress.2019.02.002
|
[7] |
Long Y W, Luo H W, Zhi Y, et al. Remaining useful life estimation of solder joints using an ARMA model optimized by genetic algorithm // 2018 19th International Conference on Electronic Packaging Technology (ICEPT). Shanghai, 2018: 1108
|
[8] |
Wu W, Hu J T, Zhang J L. Prognostics of machine health condition using an improved ARIMA-based prediction method // 2007 2nd IEEE Conference on Industrial Electronics and Applications. Harbin, 2007: 1062
|
[9] |
Zhou Y P, Huang M H. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron Reliab, 2016, 65: 265 doi: 10.1016/j.microrel.2016.07.151
|
[10] |
Tian Z G. An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. J Intell Manuf, 2012, 23(2): 227 doi: 10.1007/s10845-009-0356-9
|
[11] |
Mosallam A, Medjaher K, Zerhouni N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. J Intell Manuf, 2016, 27(5): 1037 doi: 10.1007/s10845-014-0933-4
|
[12] |
Khelif R, Chebel-Morello B, Malinowski S, et al. Direct remaining useful life estimation based on support vector regression. IEEE Trans Ind Electron, 2017, 64(3): 2276 doi: 10.1109/TIE.2016.2623260
|
[13] |
Miao Q, Xie L, Cui H J, et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron Reliab, 2013, 53(6): 805 doi: 10.1016/j.microrel.2012.12.004
|
[14] |
Tobon-Mejia D A, Medjaher K, Zerhouni N, et al. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models. IEEE Trans Reliab, 2012, 61(2): 491 doi: 10.1109/TR.2012.2194177
|
[15] |
Li Z X, Wu D Z, Hu C, et al. An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction. Reliab Eng Syst Saf, 2019, 184: 110 doi: 10.1016/j.ress.2017.12.016
|
[16] |
Heimes F O. Recurrent neural networks for remaining useful life estimation // 2008 International Conference on Prognostics and Health Management. Denver, 2008: 1
|
[17] |
Babu G S, Zhao P L, Li X L. Deep convolutional neural network based regression approach for estimation of remaining useful life // International Conference on Database Systems for Advanced Applications. Dallas, 2016: 214
|
[18] |
Yuan M, Wu Y T, Lin L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network // 2016 IEEE International Conference on Aircraft Utility Systems (AUS). Beijing, 2016: 135
|
[19] |
Zhang Y Z, Xiong R, He H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol, 2018, 67(7): 5695 doi: 10.1109/TVT.2018.2805189
|
[20] |
Ordó?ez C, Lasheras F S, Roca-Pardi?as J, et al. A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines. J Comput Appl Math, 2019, 346: 184 doi: 10.1016/j.cam.2018.07.008
|
[21] |
Guo L, Li N P, Jia F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing, 2017, 240: 98 doi: 10.1016/j.neucom.2017.02.045
|
[22] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
|
[23] |
Wu Y T, Yuan M, Dong S P, et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 2018, 275: 167 doi: 10.1016/j.neucom.2017.05.063
|
[24] |
Zheng S, Ristovski K, Farahat A, et al. Long short-term memory network for remaining useful life estimation // 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, 2017: 88
|
[25] |
Zhang C, Lim P, Qin A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans Neural Networks Learn Syst, 2017, 28(10): 2306 doi: 10.1109/TNNLS.2016.2582798
|
[26] |
Zhang J J, Wang P, Yan R Q, et al. Long short-term memory for machine remaining life prediction. J Manuf Syst, 2018, 48: 78 doi: 10.1016/j.jmsy.2018.05.011
|