Citation: | ZUO Wen-jing, QU Yin-hu, QI Pan-hu, FU Han-guang, WANG Yu-fan, GAO Hao-fei, ZHANG Hong. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006 |
[1] |
謝元, 李俊華, 王佳, 等. 鋰離子電池三元正極材料的研究進展. 無機鹽工業, 2018, 50(7):18
Xie Y, Li J H, Wang J, et al. Research progress in ternary cathode material of lithium ion batteries. Inorg Chem Ind, 2018, 50(7): 18
|
[2] |
王鵬博, 鄭俊超. 鋰離子電池的發展現狀及展望. 自然雜志, 2017, 39(4):283 doi: 10.3969/j.issn.0253-9608.2017.04.006
Wang P B, Zheng J C. Development status and prospects of lithium ion batteries. Nat Mag, 2017, 39(4): 283 doi: 10.3969/j.issn.0253-9608.2017.04.006
|
[3] |
吳英強, 倪歡, 孟德超, 等. 高壓鎳鈷錳三元正極材料研究進展及應用前景展望. 新材料產業, 2015(9):18 doi: 10.3969/j.issn.1008-892X.2015.09.005
Wu Y Q, Ni H, Meng D C, et al. Research progress and application prospect of high voltage nickel-cobalt-manganese ternary cathode materials. Adv Mater Ind, 2015(9): 18 doi: 10.3969/j.issn.1008-892X.2015.09.005
|
[4] |
魏致慧. 我國鋰離子電池正極材料發展現狀及趨勢. 甘肅冶金, 2017, 39(4):29 doi: 10.3969/j.issn.1672-4461.2017.04.008
Wei Z M. Development status and trend of cathode materials for lithium ion batteries in China. Gansu Metall, 2017, 39(4): 29 doi: 10.3969/j.issn.1672-4461.2017.04.008
|
[5] |
孫玉城. 鎳鈷錳酸鋰三元正極材料的研究與應用. 無機鹽工業, 2014, 46(1):1 doi: 10.3969/j.issn.1006-4990.2014.01.001
Sun Y C. Research and application of Li(Mn, Co, Ni)O2 cathode material. Inorg Chem Ind, 2014, 46(1): 1 doi: 10.3969/j.issn.1006-4990.2014.01.001
|
[6] |
郭紅霞, 喬月純, 穆培振. 鋰離子電池正極材料研究與應用進展. 無機鹽工業, 2016, 48(3):5
Guo H X, Qiao Y C, Mu P Z. Progress in research and application of cathode materials for lithium-ion battery. Inorg Chem Ind, 2016, 48(3): 5
|
[7] |
Woo S G, Kim J H, Kim H R, et al. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells. J Electroanal Chem, 2017, 799: 315 doi: 10.1016/j.jelechem.2017.06.034
|
[8] |
俞會根, 王恒, 盛軍. 三元正極材料Li[Ni-Co-Mn]O2的研究進展. 電源技術, 2014, 38(9):1749 doi: 10.3969/j.issn.1002-087X.2014.09.050
Yu H G, Wang H, Sheng J. Recent progress in cobalt/nickel/manganese oxides as positive electrode materials. Chin J Power Sources, 2014, 38(9): 1749 doi: 10.3969/j.issn.1002-087X.2014.09.050
|
[9] |
Longo R C, Kong F, Liang C P, et al. Transition metal ordering optimization for high-reversible capacity positive electrode materials in the Li–Ni–Co–Mn pseudoquaternary system. J Phys Chem C, 2016, 120(16): 8540 doi: 10.1021/acs.jpcc.6b02240
|
[10] |
Yadav S, Yamasani P, Kumar S. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manage, 2015, 99: 1 doi: 10.1016/j.enconman.2015.04.019
|
[11] |
Chou S K, Yang W M, Chua K J, et al. Development of micro power generators–a review. Appl Energy, 2011, 88(1): 1 doi: 10.1016/j.apenergy.2010.07.010
|
[12] |
黃榮根. 對3D打印技術的思考. 科技創新與應用, 2014(20):40
Huang R G. Thinking about 3D printing technology. Technol Innov Appl, 2014(20): 40
|
[13] |
高艷芳, 豆賀, 佟晗, 等. 3D打印技術的發展現狀及應用前景. 中國科技信息, 2017(12):30
Gao Y F, Dou H, Tong H, et al. Development status and application prospect of 3D printing technology. China Sci Technol Inform, 2017(12): 30
|
[14] |
張自強. 基于FDM技術3D打印機的設計與研究[學位論文]. 長春: 長春工業大學, 2015
Zhang Z Q. Design and Research of 3D Printer based on FDM[Dissertation]. Changchun: Changchun University of Technology, 2015
|
[15] |
Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science, 2015, 347(6228): 1349 doi: 10.1126/science.aaa2397
|
[16] |
Ober T J, Foresti D, Lewis J A. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci, 2015, 112(40): 12293 doi: 10.1073/pnas.1509224112
|
[17] |
Lewis J A. Direct ink writing of 3D functional materials. Adv Funct Mater, 2006, 16(17): 2193 doi: 10.1002/adfm.200600434
|