<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
ZUO Wen-jing, QU Yin-hu, QI Pan-hu, FU Han-guang, WANG Yu-fan, GAO Hao-fei, ZHANG Hong. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006
Citation: ZUO Wen-jing, QU Yin-hu, QI Pan-hu, FU Han-guang, WANG Yu-fan, GAO Hao-fei, ZHANG Hong. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006

Preparation and performance of 3D-printed positive electrode for lithium-ion battery

doi: 10.13374/j.issn2095-9389.2019.10.09.006
More Information
  • Corresponding author: E-mail: quyinhu@xpu.edu.cn
  • Received Date: 2019-10-09
  • Publish Date: 2020-03-01
  • Miniaturized batteries are widely utilized in microscale devices, and 3D printing technology has great advantages in the manufacture of miniaturized battery electrodes. Lithium–nickel–cobalt–manganate material (LiNi0.5Co0.2Mn0.3O2) is gradually becoming a mainstream cathode material for lithium-ion batteries due to its high energy density, high rate of performance, high stability, and low cost. In this study, we prepared lithium-ion-battery electrodes using extrusion-based three-dimensional (3D) printing technology, and we selected ternary nickel–cobalt–manganese hydride as the positive active material. Subsequently, using deionized water, hydroxyethyl cellulose, and other additives, positive inks was prepared for the lithium-ion battery that exhibited stable performance and adequate 3D printing. The effects of thickener type and content, ink viscosity, and the printing process on the rheological properties and printability of the ink were investigated using a rheometer, X-ray diffraction, a battery tester, and ANSYS simulation analysis. The results show that when the mass ratio of hydroxyethyl cellulose/hydroxypropyl cellulose is 1∶1 and the mass fraction is 3%, the viscosity of the prepared ink is 20.26 Pa·s, and it shows good rheology and uniformity in printing. At present, the printing electrode has good rheology, steady ink outflow, and a smooth surface, which satisfies the printability requirements of the ink. Additionally, the simulation results show that the fluidity of the ink is significantly influenced by its viscosity. The electrode preparation process, e.g., ultrasonic dispersion, printing, or sintering, does not lead to a change in the crystal structure of the electrode material. The first-charge and discharge capacities of the electrodes are 226.5 and 119.4 mA·h·g?1, respectively. After 20 cycles, the change rates of the charge and discharge capacities in the battery decrease and then tend to become stable. Lastly, the 3D printed electrode exhibits good cycle stability.

     

  • loading
  • [1]
    謝元, 李俊華, 王佳, 等. 鋰離子電池三元正極材料的研究進展. 無機鹽工業, 2018, 50(7):18

    Xie Y, Li J H, Wang J, et al. Research progress in ternary cathode material of lithium ion batteries. Inorg Chem Ind, 2018, 50(7): 18
    [2]
    王鵬博, 鄭俊超. 鋰離子電池的發展現狀及展望. 自然雜志, 2017, 39(4):283 doi: 10.3969/j.issn.0253-9608.2017.04.006

    Wang P B, Zheng J C. Development status and prospects of lithium ion batteries. Nat Mag, 2017, 39(4): 283 doi: 10.3969/j.issn.0253-9608.2017.04.006
    [3]
    吳英強, 倪歡, 孟德超, 等. 高壓鎳鈷錳三元正極材料研究進展及應用前景展望. 新材料產業, 2015(9):18 doi: 10.3969/j.issn.1008-892X.2015.09.005

    Wu Y Q, Ni H, Meng D C, et al. Research progress and application prospect of high voltage nickel-cobalt-manganese ternary cathode materials. Adv Mater Ind, 2015(9): 18 doi: 10.3969/j.issn.1008-892X.2015.09.005
    [4]
    魏致慧. 我國鋰離子電池正極材料發展現狀及趨勢. 甘肅冶金, 2017, 39(4):29 doi: 10.3969/j.issn.1672-4461.2017.04.008

    Wei Z M. Development status and trend of cathode materials for lithium ion batteries in China. Gansu Metall, 2017, 39(4): 29 doi: 10.3969/j.issn.1672-4461.2017.04.008
    [5]
    孫玉城. 鎳鈷錳酸鋰三元正極材料的研究與應用. 無機鹽工業, 2014, 46(1):1 doi: 10.3969/j.issn.1006-4990.2014.01.001

    Sun Y C. Research and application of Li(Mn, Co, Ni)O2 cathode material. Inorg Chem Ind, 2014, 46(1): 1 doi: 10.3969/j.issn.1006-4990.2014.01.001
    [6]
    郭紅霞, 喬月純, 穆培振. 鋰離子電池正極材料研究與應用進展. 無機鹽工業, 2016, 48(3):5

    Guo H X, Qiao Y C, Mu P Z. Progress in research and application of cathode materials for lithium-ion battery. Inorg Chem Ind, 2016, 48(3): 5
    [7]
    Woo S G, Kim J H, Kim H R, et al. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells. J Electroanal Chem, 2017, 799: 315 doi: 10.1016/j.jelechem.2017.06.034
    [8]
    俞會根, 王恒, 盛軍. 三元正極材料Li[Ni-Co-Mn]O2的研究進展. 電源技術, 2014, 38(9):1749 doi: 10.3969/j.issn.1002-087X.2014.09.050

    Yu H G, Wang H, Sheng J. Recent progress in cobalt/nickel/manganese oxides as positive electrode materials. Chin J Power Sources, 2014, 38(9): 1749 doi: 10.3969/j.issn.1002-087X.2014.09.050
    [9]
    Longo R C, Kong F, Liang C P, et al. Transition metal ordering optimization for high-reversible capacity positive electrode materials in the Li–Ni–Co–Mn pseudoquaternary system. J Phys Chem C, 2016, 120(16): 8540 doi: 10.1021/acs.jpcc.6b02240
    [10]
    Yadav S, Yamasani P, Kumar S. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manage, 2015, 99: 1 doi: 10.1016/j.enconman.2015.04.019
    [11]
    Chou S K, Yang W M, Chua K J, et al. Development of micro power generators–a review. Appl Energy, 2011, 88(1): 1 doi: 10.1016/j.apenergy.2010.07.010
    [12]
    黃榮根. 對3D打印技術的思考. 科技創新與應用, 2014(20):40

    Huang R G. Thinking about 3D printing technology. Technol Innov Appl, 2014(20): 40
    [13]
    高艷芳, 豆賀, 佟晗, 等. 3D打印技術的發展現狀及應用前景. 中國科技信息, 2017(12):30

    Gao Y F, Dou H, Tong H, et al. Development status and application prospect of 3D printing technology. China Sci Technol Inform, 2017(12): 30
    [14]
    張自強. 基于FDM技術3D打印機的設計與研究[學位論文]. 長春: 長春工業大學, 2015

    Zhang Z Q. Design and Research of 3D Printer based on FDM[Dissertation]. Changchun: Changchun University of Technology, 2015
    [15]
    Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science, 2015, 347(6228): 1349 doi: 10.1126/science.aaa2397
    [16]
    Ober T J, Foresti D, Lewis J A. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci, 2015, 112(40): 12293 doi: 10.1073/pnas.1509224112
    [17]
    Lewis J A. Direct ink writing of 3D functional materials. Adv Funct Mater, 2006, 16(17): 2193 doi: 10.1002/adfm.200600434
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (1242) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频