Citation: | CHEN Qing-fa, WANG Shao-ping, QIN Shi-kang. Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer[J]. Chinese Journal of Engineering, 2020, 42(9): 1119-1129. doi: 10.13374/j.issn2095-9389.2019.10.03.001 |
[1] |
Littlewood D. Corporate social responsibility, mining and sustainable development in Namibia: critical reflections through a relational lens. <italic>Dev South Afr</italic>, 2015, 32(2): 240 doi: 10.1080/0376835X.2014.984833
|
[2] |
Soni A K, Wolkersdorfer C. Mine water: policy perspective for improving water management in the mining environment with respect to developing economies. <italic>Int J Min Reclam Environ</italic>, 2016, 30(2): 115 doi: 10.1080/17480930.2015.1011372
|
[3] |
陳慶發, 蘇家紅. 協同開采及其技術體系. 中南大學學報: 自然科學版, 2013, 44(2):732
Chen Q F, Su J H. Synergetic mining and itstechnology system. <italic>J Cent South Univ Sci Technol</italic>, 2013, 44(2): 732
|
[4] |
陳慶發, 吳仲雄. 大量放礦同步充填無頂柱留礦采礦方法: 中國專利, 201010181971.2. 2010-10-20
Chen Q F, Wu Z X. A Large Number of Ore Drawing Synchronous Filling No-top-pillar Shrinkage Stoping Method: China Patent, 201010181971.2. 2010-10-20
|
[5] |
Chen Q F, Qin S K, Chen Q L. Numerical simulation of ore particle flow behaviour through a single drawpoint under the influence of a flexible barrier. <italic>Geofluids</italic>, 2019: 6127174
|
[6] |
Chen Q F, Qin S K, Chen Q L. Stress analysis of ore particle flow behaviour under the influence of a flexible barrier. <italic>Arab J Geosci</italic>, 2019, 12(15): 472 doi: 10.1007/s12517-019-4658-8
|
[7] |
Chen Q F, Zhao F Y, Chen Q L, et al. Orthogonal simulation experiment for flow characteristics of ore in ore drawing and influencing factors in a single funnel under a flexible isolation layer. <italic>JOM</italic>, 2017, 69(12): 2485 doi: 10.1007/s11837-017-2409-4
|
[8] |
陳慶發, 陳青林, 王玉丁, 等. 多漏斗放礦柔性隔離層界面移動規律及其拉力特性. 應用基礎與工程科學學報, 2018, 26(5):1101
Chen Q F, Chen Q L, Wang Y D, et al. Study of the movement law and tensile force character of flexible isolation layer interface in multiple funnels. <italic>J Basic Sci Eng</italic>, 2018, 26(5): 1101
|
[9] |
陳慶發, 陳青林, 鐘毓, 等. 柔性隔離層下多漏斗礦巖流動特性及影響因素正交模擬試驗. 中國科學: 技術科學, 2017, 47(9):923 doi: 10.1360/N092016-00324
Chen Q F, Chen Q L, Zhong Y, et al. Orthogonal simulation test for flowing characteristics of ore-rock and influence factor in ore drawing from multiple funnels under flexible isolation layer. <italic>Sci Sin Tech</italic>, 2017, 47(9): 923 doi: 10.1360/N092016-00324
|
[10] |
陳慶發, 陳青林, 仲建宇, 等. 柔性隔離層下單漏斗散體礦巖流動規律. 工程科學學報, 2016, 38(7):893
Chen Q F, Chen Q L, Zhong J Y, et al. Flow pattern of granular ore rock in a single funnel under a flexible isolation layer. <italic>Chin J Eng</italic>, 2016, 38(7): 893
|
[11] |
陳慶發, 陳青林, 仲建宇, 等. 單漏斗放礦柔性隔離層界面形態演化規律. 中國有色金屬學報, 2016, 26(6):1332
Chen Q F, Chen Q L, Zhong J Y, et al. Evolution law of interface morphology of flexible isolation layer under ore drawing from single funnel. <italic>Chin J Nonferrous Met</italic>, 2016, 26(6): 1332
|
[12] |
陳慶發, 趙富裕, 陳青林, 等. 基于室內模型試驗的多漏斗同步放礦柔性隔離層材料受力特性分析. 工程力學, 2018, 35(11):240 doi: 10.6052/j.issn.1000-4750.2017.08.0606
Chen Q F, Zhao F Y, Chen Q L, et al. Mechanical properties analysis for a flexible isolation layer material in multiple funnels synchronous ore drawing based on an indoor model experiment. <italic>Eng Mech</italic>, 2018, 35(11): 240 doi: 10.6052/j.issn.1000-4750.2017.08.0606
|
[13] |
Tordesillas A, Shi J Y, Muhlhaus H B. Noncoaxiality and force chain evolution. <italic>Int J Eng Sci</italic>, 2009, 47(11-12): 1386 doi: 10.1016/j.ijengsci.2008.12.011
|
[14] |
Hunt G W, Tordesillas A, Green S C, et al. Force-chain buckling in granular media: a structural mechanics perspective. <italic>Philos Trans R Soc A</italic>:<italic>Math Phys Eng Sci</italic>, 2010, 368(1910): 249 doi: 10.1098/rsta.2009.0180
|
[15] |
Socolar J E S, Schaeffer D G, Claudin P. Directed force chain networks and stress response in static granular materials. <italic>Eur Phys J E</italic>, 2002, 7(4): 353 doi: 10.1140/epje/i2002-10011-7
|
[16] |
Estep J, Dufek J. Substrate effects from force chain dynamics in dense granular flows. <italic>J Geophys Res Earth Surf</italic>, 2012, 117(F1): 1028
|
[17] |
Chen F X, Zhuang Q, Wang R L, et al. Damage point prediction of a force chain based on the digital image correlation method. <italic>Appl Opt</italic>, 2017, 56(3): 636 doi: 10.1364/AO.56.000636
|
[18] |
Hou S Q, Wang W, Wang Z Y, et al. Force chain characteristics and effects of a dense granular flow system in a third body interface during the shear dilatancy process. <italic>J Appl Mech Tech Phys</italic>, 2018, 59(1): 153 doi: 10.1134/S0021894418010194
|
[19] |
Tordesillas A. Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. <italic>Philos Mag</italic>, 2007, 87(32): 4987 doi: 10.1080/14786430701594848
|
[20] |
Sun Q C, Jin F, Liu J G, et al. Understanding force chains in dense granular materials. <italic>Int J Mod Phys B</italic>, 2010, 24(29): 5743 doi: 10.1142/S0217979210055780
|
[21] |
Tordesillas A, Steer C A H, Walker D M. Force chain and contact cycle evolution in a dense granular material under shallow penetration. <italic>Nonlin Processes Geophys</italic>, 2014, 21(2): 505 doi: 10.5194/npg-21-505-2014
|
[22] |
Zhang W, Zhou J, Zhang X J, et al. Quantitative investigation into the relation between force chains and stress transmission during high-velocity compaction of powder. <italic>J Korean Phys Soc</italic>, 2019, 74(7): 660 doi: 10.3938/jkps.74.660
|
[23] |
Zhang L R, Nguyen N G H, Lambert S, et al. The role of force chains in granular materials: from statics to dynamics. <italic>Eur J Environ Civil Eng</italic>, 2017, 21(7-8): 874 doi: 10.1080/19648189.2016.1194332
|
[24] |
Xu R, Liu E L. Analysis on evolution of force chain and contact network of non-cohesive soil. <italic>Key Eng Mater</italic>, 2019, 803: 253 doi: 10.4028/www.scientific.net/KEM.803.253
|
[25] |
辛海麗, 孫其誠, 劉建國, 等. 剛性塊體壓入顆粒體系時的受力及力鏈演變. 巖土力學, 2009, 30(增刊1): 88
Xin H L, Sun Q C, Liu J G, et al. Evolution of force chains in a granular assembly based on indentation test. Rock Soil Mech, 2009, 30(Suppl l): 88
|
[26] |
付龍龍, 周順華, 田志堯, 等. 雙軸壓縮條件下顆粒材料中力鏈的演化. 巖土力學, 2019, 40(6):2427
Fu L L, Zhou S H, Tian Z Y, et al. Force chain evolution in granular materials during biaxial compression. <italic>Rock Soil Mech</italic>, 2019, 40(6): 2427
|
[27] |
張煒, 周劍, 于世偉, 等. 雙軸壓縮下顆粒物質接觸力與力鏈特性研究. 應用力學學報, 2018, 35(3):530
Zhang W, Zhou J, Yu S W, et al. Investigation on contact force and force chain of granular matter in biaxial compression. <italic>Chin J Appl Mech</italic>, 2018, 35(3): 530
|
[28] |
Rothenburg L, Bathurst R J. Analytical study of induced anisotropy in idealized granular materials. <italic>Géotechnique</italic>, 1989, 39(4): 601 doi: 10.1680/geot.1989.39.4.601
|