<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
TANG Xu-long, ZHANG Mei, GUO Min, WANG Xi-dong. Structurally-based viscosity model for multicomponent slag systems[J]. Chinese Journal of Engineering, 2020, 42(9): 1149-1156. doi: 10.13374/j.issn2095-9389.2019.09.27.001
Citation: TANG Xu-long, ZHANG Mei, GUO Min, WANG Xi-dong. Structurally-based viscosity model for multicomponent slag systems[J]. Chinese Journal of Engineering, 2020, 42(9): 1149-1156. doi: 10.13374/j.issn2095-9389.2019.09.27.001

Structurally-based viscosity model for multicomponent slag systems

doi: 10.13374/j.issn2095-9389.2019.09.27.001
More Information
  • Corresponding author: E–mail: zhangmei@ustb.edu.cn
  • Received Date: 2019-09-27
  • Publish Date: 2020-09-20
  • Viscosity is a physical property of fluids and shows resistance to flow. In metallurgical slag, it directly affects various parameters of a metallurgical process such as reaction rate, separation effect, etc. The estimation of viscosity by models during a production process is considered to be much more effective owing to the production fluctuations and complexities of the slag composition. Many viscosity models have been developed in the past, such as the structural model with a wide range of adaptability and complex calculation process and the empirical and semiempirical models with simple structure and a narrow range of adaptability. The present paper proposed a new method to calculate the structural parameter (NBO/T) ratio (the amount of nonbridging oxygen per tetrahedral-coordinated atom), based on which the relationship between the viscosity of molten slag and (NBO/T) ratio was investigated. First, the viscosity model was applied to SiO2–ΣMxO slags, with the model parameters obtained by fitting the viscosity data of pure oxide and SiO2–MxO binary slag, and the average deviations were in the range of 9%–18.5%. Then, the model was extended to calculate the viscosity of SiO2–Al2O3–ΣMxO, a multicomponent complex aluminosilicate system, and Al2O3 was split into acid and basic oxides. Then the oxides were used for calculating the (NBO/T) ratio and viscosity activation energy based on the amphoteric behavior of Al2O3 in SiO2–Al2O3–MxO ternary slag system. Using the parameters of a SiO2–MxO binary system, the model parameters of the Al2O3-containing slag system were obtained by fitting the viscosity data of the SiO2–Al2O3–MxO ternary slag system with average deviations between 10% and 25%. In addition, the viscosity of a multi-complex system (SiO2–Al2O3–CaO–MgO–FeO–Na2O–K2O–Li2O–BaO–SrO–MnO) and its subsystems were also calculated using the model proposed in this paper, and the average deviations is less than 25%, which shows relatively accurate prediction results. The present model is based on the analysis of a slag structure and processing of data by an empirical method. This method has a better prediction effect and wider application range compared with the traditional empirical model, and it uses a simpler calculation process compared with the structure model.

     

  • loading
  • [1]
    毛裕文. 冶金熔體. 北京: 冶金工業出版社, 1994

    Mao Y W. Metallurgical Melt. Beijing: Metallurgical Industry Press, 1994
    [2]
    Shankar A, Gornerup M, Lahiri A K, et al. Estimation of viscosity for blast furnace type slags. <italic>Ironmaking Steelmaking</italic>, 2007, 34(6): 477 doi: 10.1179/174328107X17467
    [3]
    Kondratiev A, Hayes P C, Jak E. Development of a quasi–chemical viscosity model for fully liquid slags in the Al<sub>2</sub>O<sub>3</sub>–CaO–'FeO'–MgO–SiO<sub>2</sub> system. The experimental data for the 'FeO'–MgO–SiO<sub>2</sub>, CaO–'FeO'–MgO–SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>–CaO–'FeO'–MgO–SiO<sub>2</sub> systems at iron saturation. <italic>ISIJ Int</italic>, 2008, 48(1): 7 doi: 10.2355/isijinternational.48.7
    [4]
    Urbain G. Viscosity of silica, alumina, and Na and K oxides: Measurements and estimate. <italic>Revue Internationale des Hautes Temperatures et des Refractaires</italic>, 1985, 22(1): 39
    [5]
    Gaye H, Riboud P V, Welfringer J. Use of a slag model to describe slag–metal reactions and precipitation of inclusions. <italic>Ironmaking Steelmaking</italic>, 1988, 15(6): 319
    [6]
    Forsbacka L, Holappa L, Iida T, et al. Experimental study of viscosities of selected CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> slags and application of the Iida model. <italic>Scand J Metall</italic>, 2003, 32(5): 273 doi: 10.1034/j.1600-0692.2003.00652.x
    [7]
    唐續龍, 郭敏, 王習東, 等. 基于修正的(NBO/T)比值的黏度模型. 北京科技大學學報, 2010, 32(12):1542

    Tang X L, Guo M, Wang X D, et al. Estimation model of viscosity based on modified (NBO/T) ratio. <italic>J Univ Sci Technol Beijing</italic>, 2010, 32(12): 1542
    [8]
    Mills K C. Influence of structure on the physico–chemical properties of slags. <italic>ISIJ Int</italic>, 1993, 33(1): 148 doi: 10.2355/isijinternational.33.148
    [9]
    Bockris J O M, Lowe D C. Viscosity and the structure of molten silicates. Proc Royal Soc London. <italic>Ser AMath Phys Sci</italic>, 1954, 226(1167): 423
    [10]
    Urbain G, Bottinga Y, Richet P. Viscosity of liquid silica, silicates and alumino–silicates. <italic>Geochim Cosmochim Acta</italic>, 1982, 46(6): 1061 doi: 10.1016/0016-7037(82)90059-X
    [11]
    Mizoguchi K, Yamane M, Suginohara Y. Viscosity measurements of the molten MeO (Me = Ca, Mg, Na)–SiO<sub>2</sub>–Ga<sub>2</sub>O<sub>3</sub> silicate systems. <italic>J Jpn Inst Met</italic>, 1986, 50(1): 76 doi: 10.2320/jinstmet1952.50.1_76
    [12]
    Bockris J O M, Mackenzie J D, Kitchener J A. Viscous flow in silica and binary liquid silicates. <italic>Trans Faraday Soc</italic>, 1955, 51: 1734 doi: 10.1039/tf9555101734
    [13]
    Ji F Z, Du S C, Seetharaman S. Experimental studies of the viscosities in Fe<sub>n</sub>O–MgO–SiO<sub>2</sub> and Fe<sub>n</sub>O–MnO–SiO<sub>2</sub> slags. <italic>Ironmaking Steelmaking</italic>, 1998, 25(4): 309
    [14]
    Segers L, Fontana A, Winand R. Viscosities of melts of silicates of the ternary system CaO–SiO<sub>2</sub>–MnO. <italic>Electrochim Acta</italic>, 1979, 24(2): 213 doi: 10.1016/0013-4686(79)80027-4
    [15]
    Shiraishi Y, Ikeda K, Tamura A, et al. On the viscosity and density of the molten FeO–SiO<sub>2</sub> system. <italic>Trans Jpn Inst Met</italic>, 1978, 19(5): 264 doi: 10.2320/matertrans1960.19.264
    [16]
    Kucharski M, Stubina N M, Toguri J M. Viscosity measurements of molten Fe–O–SiO<sub>2</sub>, Fe–O–CaO–SiO<sub>2</sub>, and Fe–O–MgO–SiO<sub>2</sub> slags. <italic>Can Metall Q</italic>, 1989, 28(1): 7 doi: 10.1179/cmq.1989.28.1.7
    [17]
    溝口數一, 岡本一徳, 杉之原幸夫. 粘度測定による溶融アルミノ珪酸塩中のA1<sup>3+</sup>イオンの酸素配位數について. 日本金屬學會誌, 1982, 46(11):1055 doi: 10.2320/jinstmet1952.46.11_1055

    Mizoguchi K, Okamoto K, Suginohara Y. Oxygen coordination of Al<sup>3+</sup> ion in several silicate melts studied by viscosity measurements. <italic>J Jpn Inst Met</italic>, 1982, 46(11): 1055 doi: 10.2320/jinstmet1952.46.11_1055
    [18]
    Ray H S, Pal S. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. <italic>Ironmaking Steelmaking</italic>, 2004, 31(2): 125 doi: 10.1179/030192304225012097
    [19]
    Kondratiev A, Jak E. Review of experimental data and modeling of the viscosities of fully liquid slags in the Al<sub>2</sub>O<sub>3</sub>–CaO–'FeO'–SiO<sub>2</sub> system. <italic>Metall Mater Trans B</italic>:<italic>Process Metall Mater Proc Sci</italic>, 2001, 32(6): 1015 doi: 10.1007/s11663-001-0090-y
    [20]
    神隆浩, 溝口數一, 杉之原幸夫. 珪酸塩の粘度におよぼすAl<sub>2</sub>O<sub>3</sub>の影響. 日本金屬學會誌, 1978, 42(8):775 doi: 10.2320/jinstmet1952.42.8_775

    Kou T, Mizoguchi K, Suginohara Y. The effect of Al<sub>2</sub>O<sub>3</sub> on the viscosity of silicate melts. <italic>J Jpn Inst Met</italic>, 1978, 42(8): 775 doi: 10.2320/jinstmet1952.42.8_775
    [21]
    Allibert M, Gaye H, Geiseler J, et al. Slag Atlas. 2nd Ed. Düsseldorf: Verlag Stahleisen GmbH, 1995
    [22]
    Kawahara M, Mizoguchi K, Suginohara Y. Viscosity and infrared spectra of calcium oxide-silicon dioxide-manganese oxide and manganese oxide-silicon dioxide-aluminum oxide melts. <italic>Bull Kyushu Inst Technol </italic>(<italic>Sci Technol</italic>)<italic></italic>, 1981, 43: 53
    [23]
    Scarfe C M, Cronin D J, Wenzel J T, et al. Viscosity–temperature relationships at 1 atm in the system diopside–anorthite. <italic>Am Mineral</italic>, 1983, 68: 1083
    [24]
    Yasukouchi T, Nakashima K, Mori K. Viscosity of ternary CaO–SiO<sub>2</sub>–M<italic><sub>x</sub></italic>(F, O)<italic><sub>y</sub></italic> and CaO–Al<sub>2</sub>O<sub>3</sub>–Fe<sub>2</sub>O<sub>3</sub> melts. <italic>Tetsu-to-Hagane</italic>, 1999, 85(8): 571 doi: 10.2355/tetsutohagane1955.85.8_571
    [25]
    Mills K C, Chapman L, Fox A B, et al. 'Round robin' project on the estimation of slag viscosities. <italic>Scand J Metall</italic>, 2001, 30(6): 396 doi: 10.1034/j.1600-0692.2001.300608.x
    [26]
    Toplis M J, Dingwell D B, Hess K U, et al. Viscosity, fragility, and configurational entropy of melts along the join SiO<sub>2</sub>–NaAlSiO<sub>4</sub>. <italic>Am Mineral</italic>, 1997, 82(9-10): 979 doi: 10.2138/am-1997-9-1014
    [27]
    Toplis M J, Dingwell D B, Lenci T. Peraluminous viscosity maxima in Na<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> liquids: the role of triclusters in tectosilicate melts. <italic>Geochim Cosmochim Acta</italic>, 1997, 61(13): 2605 doi: 10.1016/S0016-7037(97)00126-9
    [28]
    Machin J S, Yee T B. Viscosity studies of system CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>: IV, 60 and 65% SiO<sub>2</sub>. <italic>J Am Ceram Soc</italic>, 1954, 37(4): 177 doi: 10.1111/j.1151-2916.1954.tb14019.x
    [29]
    Machin J S, Yee T B, Hanna D L. Viscosity studies of system CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2:</sub> Ⅲ, 35, 45, and 50% SiO<sub>2</sub>. <italic>J Am Ceram Soc</italic>, 1952, 35(12): 322 doi: 10.1111/j.1151-2916.1952.tb13057.x
    [30]
    Kita Y, Handa A, Iida T. Measurements and calculations of viscosities of blast furnace type slags. <italic>J High Temp Soc</italic>, 2001, 27(4): 144
    [31]
    Machin J S, Yee T B. Viscosity studies of system CaO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>: Ⅱ, CaO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>. <italic>J Am Ceram Soc</italic>, 1948, 31(7): 200 doi: 10.1111/j.1151-2916.1948.tb14290.x
    [32]
    Scarfe C M, Cronin D J. Viscosity–temperature relationships of melts at 1 atm in the system diopside–albite. <italic>Am Mineral</italic>, 1986, 71: 767
    [33]
    唐續龍, 馬明生. 熔渣黏度模型介紹及其預報效果比較. 中國有色冶金, 2015, 44(1):18

    Tang X L, Ma M S. A description of slag viscosity model and the prediction capability. <italic>China Nonferrous Metall</italic>, 2015, 44(1): 18
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article views (1545) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频