<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
REN Hao-yan, XIE Guo-liang, LIU Xin-hua. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006
Citation: REN Hao-yan, XIE Guo-liang, LIU Xin-hua. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006

Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys

doi: 10.13374/j.issn2095-9389.2019.09.18.006
More Information
  • The effect of solid-state phase transformation during heat treatment on the friction and wear properties of Cu–3Fe–0.18C alloy prepared by vacuum melting was studied. The as-cast structure, deformed structure, Fe–C phase morphology, mechanical properties, and the friction and wear behavior of Cu–Fe–C alloy were studied by optical microscopy (OM), scanning electron microscopy (SEM), nano-mechanical probe analysis, mechanical properties test, and friction and wear experiments, respectively, at room temperature. The results show that micro- and nano-sized Fe–C phases are dispersed in the Cu–(Fe–C) alloy, and the micron-sized Fe–C phase undergoes solid-state transformation during quenching and tempering, which is similar to the martensite transformation and tempering transformation in steel. After quenched at 850 ℃ and tempering at 200, 400 and 650 ℃, the Fe–C phase gradually transforms from acicular martensite to granular tempered sorbite. The corresponding nano-hardness of the Fe–C phase is 9.4, 8, 4.2 and 3.8 GPa, respectively, and the hardness of the strengthening phase is controlled. Through an analysis of tensile fracture, a large number of dissociation surfaces appear on the fracture surface of the quenched alloy. The crack source is located at the interface between the Fe–C phase and the matrix. With an increase in the tempering temperature, the dissociation surface of the fracture surface of the tempered alloy gradually decreases until it disappears, and the crack source gradually transfers to the matrix. The evolution of fracture surface indicates that the bonding between Fe–C phase and matrix in the quenched alloys is poor. With the increase of the tempering temperature, the bonding interface between the Fe–C phase and the matrix is improved. The experimental results of friction and wear at room temperature show that with the increase of tempering temperature, the wear mechanism of the alloy gradually changes from ploughing to adhesion wear and severe plastic deformation, which results in a decrease in the alloy wear resistance. This paper can provide a reference for controlling the friction and wear properties of Cu–(Fe–C) alloys by the solid-state transformation of the Fe-C phase martensitic decomposition.

     

  • loading
  • [1]
    任劍, 崔功軍, 魯張祥. Cu–Fe基摩擦片摩擦磨損性能的實驗研究. 科學技術與工程, 2017, 17(30):223

    Ren J, Cui G J, Lu Z X. Experimental study on tribological characteristics of friction plate for belt conveyor. <italic>Sci Technol Eng</italic>, 2017, 17(30): 223
    [2]
    李雨蔚, 肖來榮, 章瑋, 等. 不同Mn含量的鋁青銅合金組織與性能. 稀有金屬, 2017, 41(9):985

    Li Y W, Xiao L R, Zhang W, et al. Microstructure and mechanical properties of aluminum bronze with different Mn contents. <italic>Chin J Rare Met</italic>, 2017, 41(9): 985
    [3]
    蔣婭琳, 朱和國. 銅基復合材料的摩擦磨損性能研究現狀. 材料導報, 2014, 28(3):33

    Jiang Y L, Zhu H G. Research status of friction and wear properties of copper matrix composites. <italic>Mater Rep</italic>, 2014, 28(3): 33
    [4]
    ?sterle W, Prietzel C, Klo? H, et al. On the role of copper in brake friction materials. <italic>Tribol Int</italic>, 2010, 43(12): 2317 doi: 10.1016/j.triboint.2010.08.005
    [5]
    何波, 王晨, 雷濤, 等. 激光沉積TC4/TC11梯度復合結構各梯度層性能研究. 稀有金屬, 2014, 38(6):1

    He B, Wang C, Lei T, et al. Study on properties of gradient layers of laser deposited TC4/TC11 gradient composite structure. <italic>Chin J Rare Met</italic>, 2014, 38(6): 1
    [6]
    魏燕, 王偉, 張雁南, 等. 表面噴丸與Fe<sup>+</sup>注入協同增強Ti13Nb13Zr合金的生物摩擦學性能. 稀有金屬, 2020, 44(1):48

    Wei Y, Wang W, Zhang Y N, et al. Synergistic enhancement of bio-tribological properties of Ti13Nb13Zr alloy by surface shot peening and Fe<sup>+</sup> implantation. <italic>Chin J Rare Met</italic>, 2020, 44(1): 48
    [7]
    He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors. <italic>Wear</italic>, 2001, 249(7): 626 doi: 10.1016/S0043-1648(01)00700-1
    [8]
    Xiao Y L, Zhang Z Y, Yao P P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. <italic>Tribol Int</italic>, 2018, 119: 585 doi: 10.1016/j.triboint.2017.11.038
    [9]
    Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. <italic>Wear</italic>, 2002, 253(7-8): 699 doi: 10.1016/S0043-1648(02)00038-8
    [10]
    Senouci A, Frene J, Zaidi H. Wear mechanism in graphite–copper electrical sliding contact. <italic>Wear</italic>, 1999, 225-229: 949 doi: 10.1016/S0043-1648(98)00412-8
    [11]
    Zhou H B, Yao P P, Xiao Y L, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. <italic>Tribol Int</italic>, 2019, 132: 199 doi: 10.1016/j.triboint.2018.11.027
    [12]
    張敏, 王剛, 張立勝, 等.40Cr鋼表面激光熔覆Fe、Ni基涂層組織性能研究.稀有金屬, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html

    Zhang M, Wang G, Zhang L S, et al. Microstructure and properties of laser cladding Fe, Ni-based coatings on 40Cr surface. Chin J Rare Met, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html
    [13]
    Xiong X, Chen J, Yao P P, et al. Friction and wear behaviors and mechanisms of Fe and SiO<sub>2</sub> in Cu-based P/M friction materials. <italic>Wear</italic>, 2007, 262(9-10): 1182 doi: 10.1016/j.wear.2006.11.001
    [14]
    Liu B W, Fan Y, Zhang J S, et al. Effect of SiO<sub>2</sub> and SiC on properties of Cu–Fe matrix sintered friction materials. <italic>Chin J Nonferrous Met</italic>, 2001, 11(增刊1): 110

    劉伯威, 樊毅, 張金生, 等. SiO<sub>2</sub>和SiC 對 Cu–Fe 基燒結摩擦材料性能的影響. 中國有色金屬學報, 2001, 11(增刊1):110)
    [15]
    郭煒, 諶昀, 陸德平, 等. 熱處理對Cu–14Fe–C合金組織和性能的影響. 金屬熱處理, 2018, 43(4):88

    Guo W, Shen Y, Lu D P, et al. Effect of heat treatment on microstructure and properties of Cu–14Fe–C alloy. <italic>Heat Treat Met</italic>, 2018, 43(4): 88
    [16]
    Guo M X, Wang F, Yi L. The microstructure controlling and deformation behaviors of Cu–Fe–C alloy prepared by rapid solidification. <italic>Mater Sci Eng A</italic>, 2016, 657: 197 doi: 10.1016/j.msea.2016.01.068
    [17]
    Guo M X, Zhu J, Yi L, et al. Effects of precipitation and strain-induced martensitic transformation of Fe–C phases on the mechanical properties of Cu–Fe–C alloy. <italic>Mater Sci Eng A</italic>, 2017, 697: 119 doi: 10.1016/j.msea.2017.05.010
    [18]
    崔忠圻, 覃耀春. 金屬學與熱處理. 2版. 北京: 機械工業出版社, 2011

    Cui Z Q, Qin Y C. Metallology and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2011
    [19]
    史弼, 宋洪偉, 王秀芳, 等. 低碳板條馬氏體鋼的納米壓痕表征//材料科學與工程新進展論文集. 北京, 2004: 1300

    Shi B, Song H W, Wang X F, et al. Nanoindentation characterization of low carbon matensitic steels//Proceedings of New Progress on Materials Science and Engineering. Beijing, 2004: 1300
    [20]
    張濟山, 劉興江, 崔華, 等. 金屬基復合材料相界面區力學性能顯微力學探針分析. 金屬學報, 1997, 33(5):548

    Zhang J S, Liu X J, Cui H, et al. Mechanical properties around reinforce particles in metal matrix composites characterized by nanoindentation technique. <italic>Acta Metall Sinica</italic>, 1997, 33(5): 548
    [21]
    何獎愛, 王玉瑋. 材料磨損與耐磨材料. 沈陽: 東北大學出版社, 2001

    He J A, Wang Y W. Material Wear and Wear Resistance Materials. Shenyang: Northeastern University Press, 2001
    [22]
    黃夏旭, 申炎華, 靳舜堯, 等. NM400/NM500級礦山機械用鋼的高溫磨損性能及機理. 工程科學學報, 2019, 41(6):797

    Huang X X, Shen Y H, Jin S Y, et al. High-temperature wear performance and mechanism of NM400/NM500 mining machinery steels. <italic>Chin J Eng</italic>, 2019, 41(6): 797
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (1436) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频