<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 5
May  2020
Turn off MathJax
Article Contents
ZHAN Wen-long, ZHU Hao-bin, HE Zhi-jun, SUN Chong, YU Ying-chang, PANG Qing-hai, ZHANG Jun-hong. Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace[J]. Chinese Journal of Engineering, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003
Citation: ZHAN Wen-long, ZHU Hao-bin, HE Zhi-jun, SUN Chong, YU Ying-chang, PANG Qing-hai, ZHANG Jun-hong. Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace[J]. Chinese Journal of Engineering, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003

Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace

doi: 10.13374/j.issn2095-9389.2019.09.18.003
More Information
  • Corresponding author: E-mail: hzhj2002@126.com
  • Received Date: 2019-09-18
  • Publish Date: 2020-05-01
  • Good gas permeability is an essential factor for the smooth operation and high performance in the lower part of the blast furnace. Under the present low carbon blast furnace smelting conditions, the coke layer is thinner, and the proportion of the molten metal in the coke layer is significantly higher, resulting in a major reduction in gas permeability, which seriously affects blast furnace operations. Also, the lower thickness of the coke layer weakens the process of solid-liquid carbon dissolution when the molten iron passes through the coke layer, which reduces the carbon content of the molten iron and further deepens the erosion of the refractory by the unsaturated molten iron. The carbon dissolution in the molten iron in a blast furnace core was measured by a high-temperature vacuum wettability test tool that analyzed the interface wetting activity between Fe?C melts with specific carbon mass fraction (3.8%, 4.3%, 4.8%) and 99.9% of high temperatures graphite plates. Besides, the scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) were used to analyze the graphite substrate’s carburizing morphology and carburizing distances. The results show that, with the increase of carbon content, the interface contact angle becomes bigger. The contact angle decreases with time, and eventually reaches a steady-state during the melting process, and the Fe?C melt with saturated carbon cannot be wet. The scanning electron microscopy analysis shows that a spherical cap-like depression is created by a cross-section of the Fe?C melt and the graphite substrate, and the radius and volume of the depression decrease with increasing carbon content. The study of the EDS scanning analysis shows that the amount of dissolved carbon atoms in the graphite substrate penetrates the Fe?C melt and decreases with increasing initial carbon concentration. The smaller the carburizing effect, the better the wetting is conducive to carbon mass transfer. It is found that by measuring carburizing of the carbon atoms in the graphite substrate into the Fe?C melt by calculating the surface energy reduces the surface energy between the two. Thus, the surface tension decreases and the melt spreads slowly with contact angle gradually decreasing during melting.

     

  • loading
  • [1]
    Chang Z Y, Wang P, Zhang J L, et al. Effect of CO2 and H2O on gasification dissolution and deep reaction of coke. Int J Miner Metall Mater, 2018, 25(12): 1402 doi: 10.1007/s12613-018-1694-4
    [2]
    王筱留. 鋼鐵冶金學(煉鐵部分). 3版. 北京: 冶金工業出版社, 2013

    Wang X L. Metallurgy of Iron and Steel (Ironmaking). 3rd Ed. Beijing: Metallurgical Industry Press, 2013
    [3]
    郭文濤, 薛慶國, 凌超, 等. 孔隙結構特征對焦炭高溫抗拉強度的影響. 工程科學學報, 2016, 38(7):930

    Guo W T, Xue Q G, Ling C, et al. Influence of pore structure features on the high temperature tensile strength of coke. Chin J Eng, 2016, 38(7): 930
    [4]
    Natsui S, Kikuchi T, Suzuki R O, et al. Characterization of liquid trickle flow in poor-wetting packed bed. ISIJ Int, 2015, 55(6): 1259 doi: 10.2355/isijinternational.55.1259
    [5]
    Ichikawa K, Kashihara Y, Oyama N, et al. Evaluating effect of coke layer thickness on permeability by pressure drop estimation model. ISIJ Int, 2017, 57(2): 254 doi: 10.2355/isijinternational.ISIJINT-2016-459
    [6]
    Geleta D D, Lee J. Effects of particle diameter and coke layer thickness on solid flow and stress distribution in BF by 3D discrete element method. Metall Mater Trans B, 2018, 49(6): 3594 doi: 10.1007/s11663-018-1368-7
    [7]
    Sun M M, Zhang J L, Li K J, et al. Dissolution behaviors of various carbonaceous materials in liquid iron: interaction between graphite and iron. JOM, 2019, 71(12): 4305 doi: 10.1007/s11837-019-03664-9
    [8]
    Mansuri I A, Khanna R, Rajarao R, et al. Recycling waste CDs as a carbon resource: dissolution of carbon into molten iron at 1550 ℃. ISIJ Int, 2013, 53(12): 2259 doi: 10.2355/isijinternational.53.2259
    [9]
    Zhang Z J, Zhang J L, Jiao K X, et al. Research progress of iron carburization in blast furnace//6th International Symposium on High–Temperature Metallurgical Processing, Orlando, 2015: 627
    [10]
    華福波, 張偉, 朱雷, 等. 焦炭床內鐵水滲碳行為. 鋼鐵研究學報, 2019, 31(7):612

    Hua F B, Zhang W, Zhu L, et al. Carburizing behavior of molten iron in coke bed. J Iron Steel Res, 2019, 31(7): 612
    [11]
    華福波, 張偉, 薛正良, 等. 焦炭在鐵水中溶解的動力學實驗. 鋼鐵研究學報, 2018, 30(6):427

    Hua F B. Zhang W, Xue Z L, et al. Kinetic experiment of dissolving coke in molten iron. J Iron Steel Res, 2018, 30(6): 427
    [12]
    Deng Y, Zhang J L, Jiao K X. Economical and efficient protection for blast furnace hearth. ISIJ Int, 2018, 58(7): 1198 doi: 10.2355/isijinternational.ISIJINT-2018-005
    [13]
    Nguyen C S, Ohno K, Maeda T, et al. Effect of carbon dissolution reaction on wetting behaviour of molten Fe?C alloy on graphite substrate in the initial contact period. ISIJ Int, 2017, 57(9): 1491 doi: 10.2355/isijinternational.ISIJINT-2017-054
    [14]
    Tang K, Lü X W, Wu S S, et al. Measurement for contact angle of iron ore particles and water. ISIJ Int, 2018, 58(3): 379 doi: 10.2355/isijinternational.ISIJINT-2017-424
    [15]
    程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面潤濕性的基礎. 工程科學學報, 2018, 40(12):1434

    Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking. Chin J Eng, 2018, 40(12): 1434
    [16]
    Frenznick S, Swaminathan S, Stratmann M, et al. A novel approach to determine high temperature wettability and interfacial reactions in liquid metal/solid interface. J Mater Sci, 2010, 45(8): 2106 doi: 10.1007/s10853-009-4147-7
    [17]
    Tandjaoui A, Cherif M, Carroz L, et al. Investigation of liquid oxide interactions with refractory substrates via sessile drop method. J Mater Sci, 2016, 51(4): 1701 doi: 10.1007/s10853-015-9504-0
    [18]
    Mao W J, Noji T, Teshima K, et al. Wettability of molten aluminum-silicon alloys on graphite and surface tension of those alloys at 1273 K (1000 ℃). Metall Mater Trans A, 2016, 47(6): 3201 doi: 10.1007/s11661-016-3460-4
    [19]
    尹東霞, 馬沛生, 夏淑倩. 液體表面張力測定方法的研究進展. 科技通報, 2007, 23(3):424 doi: 10.3969/j.issn.1001-7119.2007.03.025

    Yin D X, Ma P S, Xia S Q. Progress on methods for measuring surface tension of liquids. Bull Sci Technol, 2007, 23(3): 424 doi: 10.3969/j.issn.1001-7119.2007.03.025
    [20]
    Eustathopoulos N, Nicholas M G, Drevet B. Wettability at High Temperatures. Oxford: Pergamon Press, 1999
    [21]
    Lee J, Morita K. Dynamic interfacial phenomena between gas, liquid iron and solid CaO during desulfurization. ISIJ Int, 2004, 44(2): 235 doi: 10.2355/isijinternational.44.235
    [22]
    Makkonen L. Young’s equation revisited. J. Phys Condens Matter, 2016, 28(13): 135001 doi: 10.1088/0953-8984/28/13/135001
    [23]
    劉永明, 施建宇, 鹿芹芹, 等. 基于楊氏方程的固體表面能計算研究進展. 材料導報, 2013, 27(6):123 doi: 10.3969/j.issn.1005-023X.2013.06.032

    Liu Y M, Shi J Y, Lu Q Q, et al. Research progress on calculation of solid surface tension based on Young's equation. Mater Rep, 2013, 27(6): 123 doi: 10.3969/j.issn.1005-023X.2013.06.032
    [24]
    Shinozaki N, Satoh N, Shinozaki H, et al. Measurement of interfacial free energy between carbon saturated molten iron and graphite based on the sign rule. J Jpn Inst Met, 2006, 70(12): 950 doi: 10.2320/jinstmet.70.950
    [25]
    Nguyen C S, Ohno K, Maeda T, et al. Role of Al2O3 in interfacial morphology and reactive wetting behaviour between carbon-unsaturated liquid iron and simulant coke substrate. ISIJ Int, 2016, 56(8): 1325 doi: 10.2355/isijinternational.ISIJINT-2015-739
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (3006) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频