Citation: | ZHAN Wen-long, ZHU Hao-bin, HE Zhi-jun, SUN Chong, YU Ying-chang, PANG Qing-hai, ZHANG Jun-hong. Interface wetting behavior between iron and coke during the carbon dissolution process in a blast furnace[J]. Chinese Journal of Engineering, 2020, 42(5): 595-601. doi: 10.13374/j.issn2095-9389.2019.09.18.003 |
[1] |
Chang Z Y, Wang P, Zhang J L, et al. Effect of CO2 and H2O on gasification dissolution and deep reaction of coke. Int J Miner Metall Mater, 2018, 25(12): 1402 doi: 10.1007/s12613-018-1694-4
|
[2] |
王筱留. 鋼鐵冶金學(煉鐵部分). 3版. 北京: 冶金工業出版社, 2013
Wang X L. Metallurgy of Iron and Steel (Ironmaking). 3rd Ed. Beijing: Metallurgical Industry Press, 2013
|
[3] |
郭文濤, 薛慶國, 凌超, 等. 孔隙結構特征對焦炭高溫抗拉強度的影響. 工程科學學報, 2016, 38(7):930
Guo W T, Xue Q G, Ling C, et al. Influence of pore structure features on the high temperature tensile strength of coke. Chin J Eng, 2016, 38(7): 930
|
[4] |
Natsui S, Kikuchi T, Suzuki R O, et al. Characterization of liquid trickle flow in poor-wetting packed bed. ISIJ Int, 2015, 55(6): 1259 doi: 10.2355/isijinternational.55.1259
|
[5] |
Ichikawa K, Kashihara Y, Oyama N, et al. Evaluating effect of coke layer thickness on permeability by pressure drop estimation model. ISIJ Int, 2017, 57(2): 254 doi: 10.2355/isijinternational.ISIJINT-2016-459
|
[6] |
Geleta D D, Lee J. Effects of particle diameter and coke layer thickness on solid flow and stress distribution in BF by 3D discrete element method. Metall Mater Trans B, 2018, 49(6): 3594 doi: 10.1007/s11663-018-1368-7
|
[7] |
Sun M M, Zhang J L, Li K J, et al. Dissolution behaviors of various carbonaceous materials in liquid iron: interaction between graphite and iron. JOM, 2019, 71(12): 4305 doi: 10.1007/s11837-019-03664-9
|
[8] |
Mansuri I A, Khanna R, Rajarao R, et al. Recycling waste CDs as a carbon resource: dissolution of carbon into molten iron at 1550 ℃. ISIJ Int, 2013, 53(12): 2259 doi: 10.2355/isijinternational.53.2259
|
[9] |
Zhang Z J, Zhang J L, Jiao K X, et al. Research progress of iron carburization in blast furnace//6th International Symposium on High–Temperature Metallurgical Processing, Orlando, 2015: 627
|
[10] |
華福波, 張偉, 朱雷, 等. 焦炭床內鐵水滲碳行為. 鋼鐵研究學報, 2019, 31(7):612
Hua F B, Zhang W, Zhu L, et al. Carburizing behavior of molten iron in coke bed. J Iron Steel Res, 2019, 31(7): 612
|
[11] |
華福波, 張偉, 薛正良, 等. 焦炭在鐵水中溶解的動力學實驗. 鋼鐵研究學報, 2018, 30(6):427
Hua F B. Zhang W, Xue Z L, et al. Kinetic experiment of dissolving coke in molten iron. J Iron Steel Res, 2018, 30(6): 427
|
[12] |
Deng Y, Zhang J L, Jiao K X. Economical and efficient protection for blast furnace hearth. ISIJ Int, 2018, 58(7): 1198 doi: 10.2355/isijinternational.ISIJINT-2018-005
|
[13] |
Nguyen C S, Ohno K, Maeda T, et al. Effect of carbon dissolution reaction on wetting behaviour of molten Fe?C alloy on graphite substrate in the initial contact period. ISIJ Int, 2017, 57(9): 1491 doi: 10.2355/isijinternational.ISIJINT-2017-054
|
[14] |
Tang K, Lü X W, Wu S S, et al. Measurement for contact angle of iron ore particles and water. ISIJ Int, 2018, 58(3): 379 doi: 10.2355/isijinternational.ISIJINT-2017-424
|
[15] |
程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面潤濕性的基礎. 工程科學學報, 2018, 40(12):1434
Cheng L M, Zhang L F, Shen P. Fundamentals of interfacial wettability in ironmaking and steelmaking. Chin J Eng, 2018, 40(12): 1434
|
[16] |
Frenznick S, Swaminathan S, Stratmann M, et al. A novel approach to determine high temperature wettability and interfacial reactions in liquid metal/solid interface. J Mater Sci, 2010, 45(8): 2106 doi: 10.1007/s10853-009-4147-7
|
[17] |
Tandjaoui A, Cherif M, Carroz L, et al. Investigation of liquid oxide interactions with refractory substrates via sessile drop method. J Mater Sci, 2016, 51(4): 1701 doi: 10.1007/s10853-015-9504-0
|
[18] |
Mao W J, Noji T, Teshima K, et al. Wettability of molten aluminum-silicon alloys on graphite and surface tension of those alloys at 1273 K (1000 ℃). Metall Mater Trans A, 2016, 47(6): 3201 doi: 10.1007/s11661-016-3460-4
|
[19] |
尹東霞, 馬沛生, 夏淑倩. 液體表面張力測定方法的研究進展. 科技通報, 2007, 23(3):424 doi: 10.3969/j.issn.1001-7119.2007.03.025
Yin D X, Ma P S, Xia S Q. Progress on methods for measuring surface tension of liquids. Bull Sci Technol, 2007, 23(3): 424 doi: 10.3969/j.issn.1001-7119.2007.03.025
|
[20] |
Eustathopoulos N, Nicholas M G, Drevet B. Wettability at High Temperatures. Oxford: Pergamon Press, 1999
|
[21] |
Lee J, Morita K. Dynamic interfacial phenomena between gas, liquid iron and solid CaO during desulfurization. ISIJ Int, 2004, 44(2): 235 doi: 10.2355/isijinternational.44.235
|
[22] |
Makkonen L. Young’s equation revisited. J. Phys Condens Matter, 2016, 28(13): 135001 doi: 10.1088/0953-8984/28/13/135001
|
[23] |
劉永明, 施建宇, 鹿芹芹, 等. 基于楊氏方程的固體表面能計算研究進展. 材料導報, 2013, 27(6):123 doi: 10.3969/j.issn.1005-023X.2013.06.032
Liu Y M, Shi J Y, Lu Q Q, et al. Research progress on calculation of solid surface tension based on Young's equation. Mater Rep, 2013, 27(6): 123 doi: 10.3969/j.issn.1005-023X.2013.06.032
|
[24] |
Shinozaki N, Satoh N, Shinozaki H, et al. Measurement of interfacial free energy between carbon saturated molten iron and graphite based on the sign rule. J Jpn Inst Met, 2006, 70(12): 950 doi: 10.2320/jinstmet.70.950
|
[25] |
Nguyen C S, Ohno K, Maeda T, et al. Role of Al2O3 in interfacial morphology and reactive wetting behaviour between carbon-unsaturated liquid iron and simulant coke substrate. ISIJ Int, 2016, 56(8): 1325 doi: 10.2355/isijinternational.ISIJINT-2015-739
|