Citation: | GAO Yang, WANG Li-wei, REN Wang, XIE Feng, MO Xiao-feng, LUO Xiong, WANG Wei-ping, YANG Xi. Reinforcement learning-based detection method for malware behavior in industrial control systems[J]. Chinese Journal of Engineering, 2020, 42(4): 455-462. doi: 10.13374/j.issn2095-9389.2019.09.16.005 |
[1] |
時憶杰. 移動互聯環境下工業控制系統安全問題研究[學位論文]. 北京: 北京郵電大學, 2016
Shi Y J. Research on the Key Security Issues of Mobile and Open Industrial Control System[Dissertation]. Beijing: Beijing University of Posts and Telecommunications, 2016
|
[2] |
Demontis A, Melis M, Biggio B, et al. Yes, machine learning can be more secure! A case study on android malware detection. IEEE Trans Dependable Secure Comput, 2019, 16(4): 711 doi: 10.1109/TDSC.2017.2700270
|
[3] |
Sharif M, Lanzi A, Giffin J, et al. Impeding malware analysis using conditional code obfuscation // Proceedings of the Network and Distributed System Security Symposium. San Diego, 2008: 1939
|
[4] |
Xiao X, Wang Z, Li Q, et al. Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences. IET Inf Secur, 2016, 11(1): 8
|
[5] |
Su X, Zhang D F, Li W J, et al. A deep learning approach to android malware feature learning and detection // 2016 IEEE Trustcom/BigDataSE/ISPA. Tianjin, 2016: 244
|
[6] |
Li G L, Gomez R, Nakamura K, et al. Human-centered reinforcement learning: a survey. IEEE Trans Human Mach Syst, 2019, 49(4): 337 doi: 10.1109/THMS.2019.2912447
|
[7] |
Wu C S, Shi J Y, Yang Y X, et al. Enhancing machine learning based malware detection model by reinforcement learning // Proceedings of the 8th International Conference on Communication and Network Security. Qingdao, 2018: 74
|
[8] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529 doi: 10.1038/nature14236
|
[9] |
Schultz M, Eskin E, Zadok F, et al. Data mining methods for detection of new malicious executables // Proceedings of the IEEE Symposium on Security and Privacy. Oakland, 2001: 38
|
[10] |
Santos I, Brezo F, Ugarte-Pedrero X, et al. Opcode sequences as representation of executables for data-mining-based unknown malware detection. Inf Sci, 2013, 231: 64 doi: 10.1016/j.ins.2011.08.020
|
[11] |
Zhang J X, Qin Z, Yin H, et al. IRMD: Malware variant detection using opcode image recognition // Proceedings of the IEEE 22nd International Conference on Parallel and Distributed Systems. Wuhan, 2016: 1175
|
[12] |
Tandon G, Chan P. Learning rules from system call arguments and sequences for anomaly detection // Proceedings of the International Workshop on Data Mining for Computer Security. Melbourne, 2003: 20
|
[13] |
Willems C, Holz T, Freiling F. Toward automated dynamic malware analysis using CWSandbox. IEEE Secur Privacy, 2007, 5(2): 32 doi: 10.1109/MSP.2007.45
|
[14] |
Rieck K, Trinius P, Willems C, et al. Automatic analysis of malware behavior using machine learning. J Comput Secur, 2011, 19(4): 639 doi: 10.3233/JCS-2010-0410
|
[15] |
Ki Y, Kim E, Kim H K. A novel approach to detect malware based on API call sequence analysis. Int J Distrib Sens Netw, 2015, 11(6): 659101 doi: 10.1155/2015/659101
|
[16] |
Busoniu L, Babu?ka R, De Schutter B. A comprehensive survey of multiagent reinforcement learning. IEEE Trans Syst Man Cybern Part C Appl Rev, 2008, 38(2): 156 doi: 10.1109/TSMCC.2007.913919
|
[17] |
Zhang T Y, Huang M L, Zhao L, et al. Learning structured representation for text classification via reinforcement learning // Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, 2018: 6053
|