Citation: | LI Mei, GUO Fei, ZHANG Li-zhong, WANG Bo, ZHANG Jun-ling, LI Zhao-tong. Threat detection in transmission scenario based on TATLNet[J]. Chinese Journal of Engineering, 2020, 42(4): 509-515. doi: 10.13374/j.issn2095-9389.2019.09.15.004 |
[1] |
Minker G A. Transmission Line Safety Monitoring System: U.S. Patent, 6377184. 2002-4-23
|
[2] |
羅霞, 張良勇, 羅文金, 等. 基于熱釋電紅外傳感器的無人機巡檢控制系統研究. 科技經濟導刊, 2019, 27(8):3
Luo X, Zhang L Y, Luo W J, et al. Research on UAV patrol control system based on pyroelectric infrared sensor. Technol Econom Guide, 2019, 27(8): 3
|
[3] |
Lu Y X, Kumar A, Zhai S F, et al. Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 5334
|
[4] |
He Y H, Zhang X Y, Sun J. Channel pruning for accelerating very deep neural networks // Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017: 1389
|
[5] |
Han S, Mao H Z, Dally W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding[J/OL]. arXiv preprint (2016-02-15)[2019-09-15]. https://arxiv.org/abs/1510.00149
|
[6] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets // Advances in Neural Information Processing Systems. Montreal, 2014: 2672
|
[7] |
段樹忠, 魏可強. 輸電線路主動預警式防外力破壞監控系統研究. 城市建設理論研究, 2017(15):6
Duan S Z, Wei K Q. Research on active early warning monitoring system for preventing external force damage of transmission lines. Theor Res Urban Constr, 2017(15): 6
|
[8] |
郭圣, 曾懿輝, 張紀賓, 等. 輸電線路防外力破壞智能監控系統的應用. 廣東電力, 2018, 31(4):139
Guo S, Zeng Y H, Zhang J B, et al. Application of intelligent monitoring system for external force damage prevention for transmission lines. Guangdong Electr Power, 2018, 31(4): 139
|
[9] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
|
[10] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks // Advances in Neural Information Processing Systems. Lake Tahoe, 2012: 1097
|
[11] |
Papageorgiou C P, Oren M, Poggio T. A general framework for object detection // Sixth International Conference on Computer Vision. Tampa, 1998: 555
|
[12] |
Jiao L, Zhang F, Liu F, et al. A survey of deep learning-based object detection. IEEE Access, 2019(7): 128837
|
[13] |
Zou Z, Shi Z, Guo Y, et al Object detection in 20 years: a survey[J/OL]. arXiv preprint (2019-05-13)[2019-09-15]. https://arxiv.org/abs/1905.05241
|
[14] |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector // European Conference on Computer Vision. Amsterdam, 2016: 21
|
[15] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Amsterdam, 2016: 779
|
[16] |
Law H, Deng J. CornerNet: detecting objects as paired keypoints // Proceedings of the European Conference on Computer Vision. Munich, 2018: 734
|
[17] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, 2014: 580
|
[18] |
Girshick R. Fast R-CNN // Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015: 1440
|
[19] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks // Advances in Neural Information Processing Systems. Montreal, 2015: 91
|
[20] |
He K M, Gkioxari G, Dollár P, et al. Mask R-CNN // Proceedings of the IEEE International Conference on Computer Vision. Honolulu, 2017: 2961
|
[21] |
Huang R, Pedoeem J, Chen C X. YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers // 2018 IEEE International Conference on Big Data (Big Data). Seattle, 2018: 2503
|
[22] |
Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv preprint (2017-04-17)[2019-09-15]. https://arxiv.org/abs/1704.04861
|
[23] |
Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6848
|
[24] |
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. arXiv preprint (2016-01-07)[2019-09-15]. https://arxiv.org/abs/1511.06434
|
[25] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 2117
|