<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
DU Hai-peng, SHAO Li-zhen, ZHANG Dong-hui. ADHD classification based on a multi-objective support vector machine[J]. Chinese Journal of Engineering, 2020, 42(4): 441-447. doi: 10.13374/j.issn2095-9389.2019.09.12.007
Citation: DU Hai-peng, SHAO Li-zhen, ZHANG Dong-hui. ADHD classification based on a multi-objective support vector machine[J]. Chinese Journal of Engineering, 2020, 42(4): 441-447. doi: 10.13374/j.issn2095-9389.2019.09.12.007

ADHD classification based on a multi-objective support vector machine

doi: 10.13374/j.issn2095-9389.2019.09.12.007
More Information
  • Corresponding author: E-mail: lshao@ustb.edu.cn
  • Received Date: 2019-09-12
  • Publish Date: 2020-04-01
  • Attention deficit hyperactivity disorder (ADHD) is one of the most common mental disorders during childhood, which lasts until adulthood in most cases. In recent years, ADHD classification based on functional magnetic resonance imaging (fMRI) data has become a research hotspot. Most existing classification algorithms reported in the literature assume that samples are balanced; however, ADHD data sets are usually imbalanced. Imbalanced data sets can cause the performance degradation of a classifier by imbalanced learning, which tends to overfocus on the majority class. In this study, we considered an imbalanced neuroimaging classification problem: classification of ADHD using resting state fMRI. We used the functional connection matrix of fMRI as the classification feature and proposed a multi-objective data classification scheme based on a support vector machine (SVM) to aid the diagnosis of ADHD. In this scheme, the imbalanced data classification problem is formulated as an SVM model with three objectives: maximizing the margin, minimizing the sum of positive errors, and minimizing the sum of negative errors. Accordingly, the positive and negative sample empirical errors can be separately handled. Then, the model is solved by a multi-objective optimization method, i.e., normal boundary intersection method. A set of representative classifiers are computed for selection by decision makers. The proposed scheme was tested and evaluated on five data sets from the ADHD-200 consortium and compared with traditional classification methods. Experimental results show that the proposed three-objective SVM classification scheme is better than traditional classification methods reported in the literature. It can effectively address the data imbalance problem from the algorithm level. This scheme can be used in the diagnosis of ADHD as well as other diseases, such as Alzheimer’s and Autism.

     

  • loading
  • [1]
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. BMC Med, 2013, 17: 133
    [2]
    Saad J F, Kohn M R, Clarke S, et al. Is the theta/beta EEG marker for ADHD inherently flawed? J Attention Disord, 2018, 22(9): 815 doi: 10.1177/1087054715578270
    [3]
    Chang C W, Ho C C, Chen J H. ADHD classification by a texture analysis of anatomical brain MRI data. Front Syst Neurosci, 2012, 6: 66
    [4]
    Kuang L D, Lin Q H, Gong X F, et al. Model order effects on ICA of resting-state complex-valued fMRI data: application to schizophrenia. J Neurosci Methods, 2018, 304: 24 doi: 10.1016/j.jneumeth.2018.02.013
    [5]
    Hojjati S H, Ebrahimzadeh A, Khazaee A, et al. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods, 2017, 282: 69 doi: 10.1016/j.jneumeth.2017.03.006
    [6]
    Castellanos F X, Margulies D S, Kelly C, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiat, 2008, 63(3): 332 doi: 10.1016/j.biopsych.2007.06.025
    [7]
    Du J Q, Wang L P, Jie B, et al. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Comput Med Imag Graph, 2016, 52: 82 doi: 10.1016/j.compmedimag.2016.04.004
    [8]
    Qureshi M N I, Jo H J, Lee B. ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state FMRI study // 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, 2017: 529
    [9]
    Miao B, Zhang Y L. A feature selection method for classification of ADHD // Proceedings of 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). Dalian, 2017: 21
    [10]
    Riaz A, Asad M, Alonso E, et al. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imag Graph, 2018, 65: 115 doi: 10.1016/j.compmedimag.2017.10.002
    [11]
    Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res, 2002, 16: 321 doi: 10.1613/jair.953
    [12]
    Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell, 2016, 5(4): 221 doi: 10.1007/s13748-016-0094-0
    [13]
    He H B, Garcia E A. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 2009, 21(9): 1263 doi: 10.1109/TKDE.2008.239
    [14]
    Shao L Z, Xu Y D, Fu D M. Classification of ADHD with bi-objective optimization. J Biomed Inf, 2018, 84: 164 doi: 10.1016/j.jbi.2018.07.011
    [15]
    Bellec P, Chu C, Chouinard-Decorte F, et al. The neuro bureau ADHD-200 preprocessed repository. Neuroimage, 2017, 144: 275 doi: 10.1016/j.neuroimage.2016.06.034
    [16]
    Friston K J. Functional and effective connectivity: a review. Brain Connect, 2011, 1(1): 13 doi: 10.1089/brain.2011.0008
    [17]
    Reris R, Brooks J P. Principal component analysis and optimization: a tutorial // Proceedings of 14th INFORMS Computing Society Conference, Richmond, Virginia, US, 2015: 212
    [18]
    Cortes C, Vapnik V. Support-vector networks. Mach Learn, 1995, 20(3): 273
    [19]
    Aytug H, Say?n S. Exploring the trade-off between generalization and empirical errors in a one-norm SVM. Eur J Oper Res, 2012, 218(3): 667 doi: 10.1016/j.ejor.2011.11.037
    [20]
    A?kan A, Say?n S. SVM classification for imbalanced data sets using a multiobjective optimization framework. Ann Oper Res, 2014, 216(1): 191 doi: 10.1007/s10479-012-1300-5
    [21]
    Das I, Dennis J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim, 1998, 8(3): 631 doi: 10.1137/S1052623496307510
    [22]
    Breiman L. Random forests. Mach Learn, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
    [23]
    Peng X L, Lin P, Zhang T S, et al. Extreme learning machine-based classification of ADHD using brain structural MRI data. PloS One, 2013, 8(11): e79476 doi: 10.1371/journal.pone.0079476
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1936) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频